Corrosion Behavior of Equiatomic Bio-High Entropy Alloys CoCrMoMnNb Fabricated in Multiple Remelting Processes

Fendy Rokhmanto, Aprilia Erryani, Albertus Deny Heri Setyawan, Yudi Nugraha Thaha, Ahmad Zakiyuddin, Ika Kartika, Sri Harjanto

Abstract

High-entropy alloys are described as equiatomic alloys of more than five elements or materials with five or more element constituents with a high mixing entropy (ΔSmix ≥ 1.5R), where the composition of the element is 5–35%, respectively. One application of HEA (high entropy alloys) materials is in the orthopedic field, where they are developed as biomaterials. Behavior, the correlation between the elemental distribution, and the microstructure of the material were investigated during multiple remelting processes known as Bio-HEAs. The development of Bio-HEAs is exciting in terms of design material, fabrication, and their properties. In this paper, the corrosion behavior and the correlation of the elemental distribution and the microstructure of the material were investigated during the multiple remelting process. The equiatomic CoCrMoMnNb was prepared in vacuum arc melting under an argon atmosphere and melted in a water-cooled copper mold. The total amount of ingot was approximately 25 grams, then flipped and remelted several times, 4, 8, and 12 cycles. The final composition of the alloys was confirmed by EDX (energy dispersive x-ray spectroscopy). The microstructure was investigated with an optical microscope and the SEM (scanning electron microscope). The corrosion parameter occurred in Hank’s solution at 37°C, at a scan rate of 1 mV/s. The CCM-MnNb fabricated with 8 cycles of the remelting process exhibits the lowest corrosion rate (0.0038 mmpy) and donor densities (2.67 × 10¹⁹ cm⁻³), while the charge transfer resistance number is the highest (18250.94 Ω cm⁻²). The outstanding corrosion resistance of the alloys is induced by the presence of the finer dendrites and the chromium oxide (Cr₂O₃) protective layer on the alloy's surface.

Keywords

High entropy alloy; bio-HEA; CoCrMo; biomaterial; remelting cycles; corrosion resistance

Full Text:

PDF

References

E. J. Pickering and N. G. Jones, “High-entropy alloys: a critical assessment of their founding principles and future prospects,” International Materials Reviews, vol. 61, no. 3, pp. 183-202, 2016. DOI: 10.1080/09506608.2016.1180020.

O. N. Senkov and D. B. Miracle, “A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys,” Journal of Alloys and Compounds, vol. 658, pp. 603-607, 2016. DOI: 10.1016/j.jallcom.2015.10.279.

D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Materialia, vol. 122, pp. 448-511, 2017. DOI: 10.1016/j.actamat.2016.08.081.

P. Martin, C. E. Madrid-Cortes, C. Cáceres, N. Araya, C. Aguilar, and J. M. Cabrera, “HEAPS: A user-friendly tool for the design and exploration of high-entropy alloys based on semi-empirical parameters,” Computer Physics Communications, vol. 278, p. 108398, 2022. DOI: 10.1016/j.cpc.2022.108398.

B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Materials Science and Engineering: A, vol. 375-377, no. 1-2 SPEC. ISS., pp. 213-218, 2004. DOI: 10.1016/j.msea.2003.10.257.

M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, and T. Nakano, “Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials,” Scripta Materialia, vol. 129, pp. 65-68, 2017. DOI: 10.1016/j.scriptamat.2016.10.028.

S. P. Wang and J. Xu, “TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties,” Materials Science and Engineering C, vol. 73, pp. 80-89, 2017. DOI: 10.1016/j.msec.2016.12.057.

G. Popescu, B. Ghiban, C. A. Popescu, L. Rosu, R. Truscă, I. Carcea, V. Soare, D. Dumitrescu, I. Constantin, M. T. Olaru, and B. A. Carlan, “New TiZrNbTaFe high entropy alloy used for medical applications,” IOP Conference Series: Materials Science and Engineering, vol. 400, no. 2, 2018. DOI: 10.1088/1757-899X/400/2/022049.

T. Nagase, M. Todai, T. Hori, and T. Nakano, “Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials,” Journal of Alloys and Compounds, vol. 753, pp. 412-421, 2018. DOI: 10.1016/j.jallcom.2018.04.082.

A. Motallebzadeh, N. S. Peighambardoust, S. Sheikh, H. Murakami, S. Guo, and D. Canadinc, “Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications,” Intermetallics, vol. 113, p. 106572, 2019. DOI: 10.1016/j.intermet.2019.106572.

T. Hori, T. Nagase, M. Todai, A. Matsugaki, and T. Nakano, “Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials,” Scripta Materialia, vol. 172, pp. 83-87, 2019. DOI: 10.1016/j.scriptamat.2019.07.011.

Y. Yuan, Y. Wu, Z. Yang, X. Liang, Z. Lei, H. Huang, H. Wang, X. Liu, Ke An, and W. Wu, Z. Lu., “Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys,” Materials Research Letters, vol. 7, no. 6, pp. 225-231, 2019. DOI: 10.1080/21663831.2019.1584592.

T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama, and T. Nakano, “Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials,” Materials Science and Engineering C, vol. 107, p. 110322, 2020. DOI: 10.1016/j.msec.2019.110322.

J. González-Masís, J. M. Cubero-Sesin, A. Campos-Quirós, and K. Edalati, “Synthesis of biocompatible high-entropy alloy TiNbZrTaHf by high-pressure torsion,” Materials Science and Engineering: A, vol. 825, 2021. DOI: 10.1016/j.msea.2021.141869.

N. Hua, W. Wang, Q. Wang, Y. Ye, S. Lin, L. Zhang, Q. Guo, J. Brechtl, P. K. Liaw, “Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys,” Journal of Alloys and Compounds, vol. 861, 2021. DOI: 10.1016/j.jallcom.2020.157997.

T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, C. Schnitter, M. Stenzel, A. Matsugaki, T. Nagase, T. Matsuzaka, and M. Todai, H. S. Kim, T. Nakano, “Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility,” Scripta Materialia, vol. 194, 2021. DOI: 10.1016/j.scriptamat.2020.113658.

Y. Iijima, T. Nagase, A. Matsugaki, P. Wang, K. Ameyama, and T. Nakano, “Design and development of Ti-Zr-Hf-Nb-Ta-Mo high-entropy alloys for metallic biomaterials,” Materials and Design, vol. 202, p. 109548, 2021. DOI: 10.1016/j.matdes.2021.109548.

T. Nagase, M. Todai, and T. Nakano, “Development of Co ­ Cr ­ Mo ­ Fe ­ Mn ­ W and Co ­ Cr ­ Mo ­ Fe ­ Mn ­ W ­ Ag high- entropy alloys based on Co ­ Cr ­ Mo Alloys,” Materials Transactions, vol. 61, no. 4, pp. 567-576, 2020. DOI: 10.2320/matertrans.MT-MK2019002.

A. E. Bololoi, L. E. Geambazu, I. V. Antoniac, R. V. Bololoi, C. A. Manea, V. D. Cojocaru, and D. Pătroi, “Solid-state processing of CoCrMoNbTi High-entropy alloy for biomedical applications,” Materials, vol. 16, no. 19, pp. 1-12, 2023. DOI: 10.3390/ma16196520.

M. Zhang, X. Zhou, and J. Li, “Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy,” Journal of Materials Engineering and Performance, vol. 26, no. 8, pp. 3657-3665, 2017. DOI: 10.1007/s11665-017-2799-z.

F. J. Lan, C. L. Zhuang, C. R. Li, J. B. Chen, G. K. Yang, and H. J. Yao, “Study on manganese volatilization behavior of Fe-Mn-C-Al twinning-induced plasticity steel,” High Temperature Materials and Processes, vol. 40, no. 1, pp. 461-470, 2021. DOI: 10.1515/htmp-2021-0049.

Z. Zhou, Q. Wei, Q. Li, B. Jiang, Y. Chen, and Y. Sun, “Development of Co-based bulk metallic glasses as potential biomaterials,” Materials Science and Engineering C, vol. 69, pp. 46-51, 2016. DOI: 10.1016/j.msec.2016.05.025.

W. Yang, Y. Liu, S. Pang, P. K. Liaw, and T. Zhang, “Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy,” Intermetallics, vol. 124, p. 106845, 2020. DOI: 10.1016/j.intermet.2020.106845.

Y. Okazaki, T. Tateishi, and Y. Ito, “Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films,” Materials Transactions, JIM, vol. 38, no. 1, pp. 78-84, 1997.

A. W. E. Hodgson, S. Kurz, S. Virtanen, V. Fervel, C.-O. Olsson, and S. Mischler, “Passive and transpassive behaviour of CoCrMo in simulated biological solutions,” Electrochimica Acta, vol. 49, no. 13, pp. 2167-2178, 2004.

A. Ghiban, B. Ghiban, C. M. Bortun, and M. Buzatu, “Structural investigations in CoCrMo (Ti) welded dental alloys,” Rev. Chim. (Bucharest), vol. 65, no. 11, pp. 1314-1318, 2014.

D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, “Design and mechanical properties of new β type titanium alloys for implant materials,” Materials Science and Engineering: A, vol. 243, no. 1-2, pp. 244-249, 1998. DOI: 10.1016/s0921-5093(97)00808-3.

X. Z. Wang, Q. Hu, L. Zhang, and Z. Cui, “The influence of Nb addition on the passivity of CoCrNiNbx multi-principal element alloys,” Journal of Electroanalytical Chemistry, vol. 908, 2022. DOI: 10.1016/j.jelechem.2022.116107.

Copyright (c) 2024 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.