Corrosion Behavior of Equiatomic Bio-High Entropy Alloys CoCrMoMnNb Fabricated in Multiple Remelting Processes
Abstract
Keywords
Full Text:
PDFReferences
E. J. Pickering and N. G. Jones, “High-entropy alloys: a critical assessment of their founding principles and future prospects,” International Materials Reviews, vol. 61, no. 3, pp. 183-202, 2016. DOI: 10.1080/09506608.2016.1180020.
O. N. Senkov and D. B. Miracle, “A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys,” Journal of Alloys and Compounds, vol. 658, pp. 603-607, 2016. DOI: 10.1016/j.jallcom.2015.10.279.
D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Materialia, vol. 122, pp. 448-511, 2017. DOI: 10.1016/j.actamat.2016.08.081.
P. Martin, C. E. Madrid-Cortes, C. Cáceres, N. Araya, C. Aguilar, and J. M. Cabrera, “HEAPS: A user-friendly tool for the design and exploration of high-entropy alloys based on semi-empirical parameters,” Computer Physics Communications, vol. 278, p. 108398, 2022. DOI: 10.1016/j.cpc.2022.108398.
B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys,” Materials Science and Engineering: A, vol. 375-377, no. 1-2 SPEC. ISS., pp. 213-218, 2004. DOI: 10.1016/j.msea.2003.10.257.
M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, and T. Nakano, “Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials,” Scripta Materialia, vol. 129, pp. 65-68, 2017. DOI: 10.1016/j.scriptamat.2016.10.028.
S. P. Wang and J. Xu, “TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties,” Materials Science and Engineering C, vol. 73, pp. 80-89, 2017. DOI: 10.1016/j.msec.2016.12.057.
G. Popescu, B. Ghiban, C. A. Popescu, L. Rosu, R. Truscă, I. Carcea, V. Soare, D. Dumitrescu, I. Constantin, M. T. Olaru, and B. A. Carlan, “New TiZrNbTaFe high entropy alloy used for medical applications,” IOP Conference Series: Materials Science and Engineering, vol. 400, no. 2, 2018. DOI: 10.1088/1757-899X/400/2/022049.
T. Nagase, M. Todai, T. Hori, and T. Nakano, “Microstructure of equiatomic and non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials,” Journal of Alloys and Compounds, vol. 753, pp. 412-421, 2018. DOI: 10.1016/j.jallcom.2018.04.082.
A. Motallebzadeh, N. S. Peighambardoust, S. Sheikh, H. Murakami, S. Guo, and D. Canadinc, “Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications,” Intermetallics, vol. 113, p. 106572, 2019. DOI: 10.1016/j.intermet.2019.106572.
T. Hori, T. Nagase, M. Todai, A. Matsugaki, and T. Nakano, “Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials,” Scripta Materialia, vol. 172, pp. 83-87, 2019. DOI: 10.1016/j.scriptamat.2019.07.011.
Y. Yuan, Y. Wu, Z. Yang, X. Liang, Z. Lei, H. Huang, H. Wang, X. Liu, Ke An, and W. Wu, Z. Lu., “Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys,” Materials Research Letters, vol. 7, no. 6, pp. 225-231, 2019. DOI: 10.1080/21663831.2019.1584592.
T. Nagase, Y. Iijima, A. Matsugaki, K. Ameyama, and T. Nakano, “Design and fabrication of Ti–Zr-Hf-Cr-Mo and Ti-Zr-Hf-Co-Cr-Mo high-entropy alloys as metallic biomaterials,” Materials Science and Engineering C, vol. 107, p. 110322, 2020. DOI: 10.1016/j.msec.2019.110322.
J. González-Masís, J. M. Cubero-Sesin, A. Campos-Quirós, and K. Edalati, “Synthesis of biocompatible high-entropy alloy TiNbZrTaHf by high-pressure torsion,” Materials Science and Engineering: A, vol. 825, 2021. DOI: 10.1016/j.msea.2021.141869.
N. Hua, W. Wang, Q. Wang, Y. Ye, S. Lin, L. Zhang, Q. Guo, J. Brechtl, P. K. Liaw, “Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys,” Journal of Alloys and Compounds, vol. 861, 2021. DOI: 10.1016/j.jallcom.2020.157997.
T. Ishimoto, R. Ozasa, K. Nakano, M. Weinmann, C. Schnitter, M. Stenzel, A. Matsugaki, T. Nagase, T. Matsuzaka, and M. Todai, H. S. Kim, T. Nakano, “Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser melting, and its improved mechanical property and biocompatibility,” Scripta Materialia, vol. 194, 2021. DOI: 10.1016/j.scriptamat.2020.113658.
Y. Iijima, T. Nagase, A. Matsugaki, P. Wang, K. Ameyama, and T. Nakano, “Design and development of Ti-Zr-Hf-Nb-Ta-Mo high-entropy alloys for metallic biomaterials,” Materials and Design, vol. 202, p. 109548, 2021. DOI: 10.1016/j.matdes.2021.109548.
T. Nagase, M. Todai, and T. Nakano, “Development of Co Cr Mo Fe Mn W and Co Cr Mo Fe Mn W Ag high- entropy alloys based on Co Cr Mo Alloys,” Materials Transactions, vol. 61, no. 4, pp. 567-576, 2020. DOI: 10.2320/matertrans.MT-MK2019002.
A. E. Bololoi, L. E. Geambazu, I. V. Antoniac, R. V. Bololoi, C. A. Manea, V. D. Cojocaru, and D. Pătroi, “Solid-state processing of CoCrMoNbTi High-entropy alloy for biomedical applications,” Materials, vol. 16, no. 19, pp. 1-12, 2023. DOI: 10.3390/ma16196520.
M. Zhang, X. Zhou, and J. Li, “Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy,” Journal of Materials Engineering and Performance, vol. 26, no. 8, pp. 3657-3665, 2017. DOI: 10.1007/s11665-017-2799-z.
F. J. Lan, C. L. Zhuang, C. R. Li, J. B. Chen, G. K. Yang, and H. J. Yao, “Study on manganese volatilization behavior of Fe-Mn-C-Al twinning-induced plasticity steel,” High Temperature Materials and Processes, vol. 40, no. 1, pp. 461-470, 2021. DOI: 10.1515/htmp-2021-0049.
Z. Zhou, Q. Wei, Q. Li, B. Jiang, Y. Chen, and Y. Sun, “Development of Co-based bulk metallic glasses as potential biomaterials,” Materials Science and Engineering C, vol. 69, pp. 46-51, 2016. DOI: 10.1016/j.msec.2016.05.025.
W. Yang, Y. Liu, S. Pang, P. K. Liaw, and T. Zhang, “Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy,” Intermetallics, vol. 124, p. 106845, 2020. DOI: 10.1016/j.intermet.2020.106845.
Y. Okazaki, T. Tateishi, and Y. Ito, “Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films,” Materials Transactions, JIM, vol. 38, no. 1, pp. 78-84, 1997.
A. W. E. Hodgson, S. Kurz, S. Virtanen, V. Fervel, C.-O. Olsson, and S. Mischler, “Passive and transpassive behaviour of CoCrMo in simulated biological solutions,” Electrochimica Acta, vol. 49, no. 13, pp. 2167-2178, 2004.
A. Ghiban, B. Ghiban, C. M. Bortun, and M. Buzatu, “Structural investigations in CoCrMo (Ti) welded dental alloys,” Rev. Chim. (Bucharest), vol. 65, no. 11, pp. 1314-1318, 2014.
D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, “Design and mechanical properties of new β type titanium alloys for implant materials,” Materials Science and Engineering: A, vol. 243, no. 1-2, pp. 244-249, 1998. DOI: 10.1016/s0921-5093(97)00808-3.
X. Z. Wang, Q. Hu, L. Zhang, and Z. Cui, “The influence of Nb addition on the passivity of CoCrNiNbx multi-principal element alloys,” Journal of Electroanalytical Chemistry, vol. 908, 2022. DOI: 10.1016/j.jelechem.2022.116107.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.
.png)











