Self-Healing Behavior of Hydrothermally Engineered HAp/PAA Coatings on Magnesium Alloy WE43
Abstract
This work examines the self-healing properties and corrosion prevention mechanisms of hydrothermally synthesized HAp/PAA (hydroxyapatite/polyacrylic acid) composite coatings on magnesium alloy WE43. The coatings were produced with different PAA concentrations (0.15, 0.3, and 0.5 wt.%) by a hydrothermal method at 140 °C for 3 hours. The composite layers were analyzed using FTIR (fourier transform infrared spectroscopy), SEM (scanning electron microscopy), and EIS (electrochemical impedance spectroscopy) to assess their structural and electrochemical properties, as well as their self-healing capabilities via a scratch–immersion test in Hank’s solution at 37 °C for 48 hours. FTIR analysis confirmed the simultaneous presence of HAp and PAA phases without any chemical reaction, indicating physical contact through hydrogen bonding. The elevation of PAA concentration markedly affected coating morphology, resulting in denser and more uniform structures characterized by spherical HAp crystals at 0.5 wt.% PAA. SEM analysis following scratching and immersion demonstrated that the 0.5 wt.% PAA coating successfully preserved surface integrity and displayed partial restoration of the injured region via the reprecipitation of Ca–P compounds. The EIS findings indicated that the 0.5 wt.% PAA coating maintained the maximum impedance modulus (>10⁴ Ω·cm²) and a steady phase angle after 48 hours of immersion, therefore affirming its exceptional corrosion resistance and self-healing properties. The results demonstrate that an ideal PAA content fosters a dense, ion-responsive hybrid layer that effectively reinstates barrier characteristics following mechanical impairment. The hydrothermally produced 0.5 wt.% HAp/PAA coating offers an efficient self-healing and corrosion-resistant surface for WE43 magnesium alloy, indicating significant potential for use in next-generation biodegradable implant systems.
Keywords
Full Text:
PDFReferences
N. A. Johari, J. Alias, A. Zanurin, N. S. Mohamed, N. A. Alang, and M. Z. M. Zain, “Recent progress of self-healing coatings for magnesium alloys protection,” J. Coatings Technol. Res., vol. 19, no. 3, pp. 757-774, 2022. DOI: 10.1007/s11998-021-00599-2.
G. Cui, Z. Bi, S. Wang, J. Liu, X. Xing, Z. Li, and B. Wang, “A comprehensive review on smart anti-corrosive coatings,” Prog. Org. Coatings, vol. 148, no. 66, p. 105821, 2020. DOI: 10.1016/j.porgcoat.2020.105821.
B. Li, Z. Zhang, T. Liu, Z. Qiu, Y. Su, J. Zhang, C. Lin, and L. Wang, “Recent progress in functionalized coatings for corrosion protection of magnesium alloys: A review,” Materials (Basel)., vol. 15, no. 11, 2022. DOI: 10.3390/ma15113912.
G. S. Pereira, G. Y. Koga, J. A. Avila, I. M. Bittencourt, F. Fernandez, M. H. Miyazaki, W. J. Botta, and W. W. Bose Filho, “Corrosion resistance of WE43 Mg alloy in sodium chloride solution,” Mater. Chem. Phys., vol. 272, 2021. DOI: 10.1016/j.matchemphys.2021.124930.
S. H. Byun, H. K. Lim, K. H. Cheon, S. M. Lee, H. E. Kim, and J. H. Lee, “Biodegradable magnesium alloy (WE43) in bone-fixation plate and screw,” J. Biomed. Mater. Res.-Part B Appl. Biomater., vol. 108, no. 6, pp. 2505-2512, 2020. DOI: 10.1002/jbm.b.34582.
C. H. Shih, C. Y. Huang, T. H. Hsiao, and C. S. Lin, “The effect of the secondary phases on the corrosion of AZ31B and WE43-T5 Mg alloys,” Corros. Sci., vol. 211, p. 110920, 2023. DOI: 10.1016/j.corsci.2022.110920.
V. K. Manivasagam, M. Sankar, C. B. Garcia, J. Vishnu, K. Chatterjee, S. Suwas, G. Manivasagam, and T. J. Webster, “Surface-modified WE43 magnesium alloys for reduced degradation and superior biocompatibility,” Vitr. Model., vol. 1, no. 3, pp. 273-288, 2022. DOI: 10.1007/s44164-022-00016-x.
H. Zhang, C. Zhang, and S. D. Jiang, “Morphology evolution of hydroxyapatite: Synergistic effects and water treatment application,” Mater. Lett., vol. 341, p. 134288, 2023. DOI: 10.1016/j.matlet.2023.134288.
S. Wen, X. Liu, J. Ding, Y. Liu, Z. Lan, Z. Zhang, and G. Chen, “Hydrothermal synthesis of hydroxyapatite coating on the surface of medical magnesium alloy and its corrosion resistance,” Prog. Nat. Sci. Mater. Int., vol. 31, no. 2, pp. 324-333, 2021. DOI: 10.1016/j.pnsc.2020.12.013.
G. Wang, Y. Wei, J. Hong, and J. Lv, “Spray-synthesized organic composite/hydroxyapatite coating on magnesium alloys with enhanced corrosion resistance,” Front. Chem., vol. 13, pp. 1-11, 2025. DOI: 10.3389/fchem.2025.1566676.
S. Roshan, H. E. Mohammadloo, A. A. Sarabi, and M. Afshari, “Biocompatible hybrid chitosan/hydroxyapatite coating applied on the AZ31 Mg alloy substrate : In-vitro corrosion, surface and structure studies,” Mater. Today Commun., vol. 30, p. 103153, 2022. DOI: 10.1016/j.mtcomm.2022.103153.
H. Arkaban, M. Barani, M. R. Akbarizadeh, N. P. S. Chauhan, S. Jadoun, M. D. & Soltani, and P. Zarrintaj, "Polyacrylic acid nanoplatforms: antimicrobial, tissue engineering, and cancer theranostic applications," Polymers, vol. 14, no. 1259. 2022. DOI: 10.3390/polym14061259.
P. Zheng, J. Deng, L. Jiang, N. Ni, X. Huang, Z. Zhao, X. Hu, X. Cen, J. Chen, and R. Wang, “Polyacrylic acid-reinforced organic-inorganic composite bone adhesives with enhanced mechanical properties and controlled degradability,” J. Mater. Chem. B, vol. 12, no. 34, pp. 8321–8334, 2024. DOI: 10.1039/d4tb00857j.
M. E. Diken, S. Doğan, M. Doğan, and Y. Turhan, “Synthesis and characterization of poly(acrylic acid)/nanohydroxyapatite nanocomposite hydrogels and evaluation of its antibacterial, bio- and hemo-compatibility characteristics,” Int. J. Polym. Mater. Polym. Biomater., vol. 71, no. 18, pp. 1425-1436, 2022. DOI: 10.1080/00914037.2021.1981320.
J. Yang, Y. Zhao, J. Dai, L. Han, and Q. Dong, “Surface & coatings technology fabrication and growth mechanism of multilayered hydroxyapatite/organic composite coatings on the WE43 magnesium alloy,” Surf. Coat. Technol., vol. 452, p. 129125, 2023. DOI: 10.1016/j.surfcoat.2022.129125.
Z. Zhang, Y. Chen, D. Mandler, and M. Shenker, “Transport of hydroxyapatite nanoparticles coated with polyacrylic acid under unsaturated water flow in soil columns,” Soil Sci. Plant Nutr., vol. 69, no. 2, pp. 124-136, 2023. DOI: 10.1080/00380768.2022.2163457.
S. Sözügeçer and N. P. Bayramgil, “Preparation and characterization of polyacrylic acid-hydroxyapatite nanocomposite by microwave-assisted synthesis method,” Heliyon, vol. 7, no. 6, p. e07226, 2021. DOI: 10.1016/j.heliyon.2021.e07226.
X. J. Ji, L. Gao, J. C. Liu, J. Wang, Q. Cheng, J. P. Li, S. Q. Li, K. Q. Zhi, R. C. Zeng, and Z. L. Wang, “Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys,” Colloids Surfaces B Biointerfaces, vol. 179, pp. 429-436, 2019. DOI: 10.1016/j.colsurfb.2019.04.029.
J. Chen, Y. Yang, I. P. Etim, L. Tan, K. Yang, R. D. K. Misra, J. Wang, and X. Su, “Recent advances on development of hydroxyapatite coating on biodegradable magnesium alloys: A review,” Materials (Basel)., vol. 14, no. 19, pp. 1-15, 2021. DOI: 10.3390/ma14195550.
K. P. P. Kumar, K. R. C. S. Raju, and R. Subasri, “Self-healing corrosion protection coatings obtained by anodization and sol–gel process on Mg AZ31 alloy,” Prot. Met. Phys. Chem. Surfaces, vol. 58, no. 4, pp. 856-871, 2022. DOI: 10.1134/S2070205122040116.
G. S. Hikku, C. Arthi, R. B. J. Robert, K. Jeyasubramanian, and R. Murugesan, “Calcium phosphate conversion technique : A versatile route to develop corrosion-resistant hydroxyapatite coating over Mg / Mg alloys based implants,” J. Magnes. Alloy., vol. 10, no. 7, pp. 1821-1845, 2022. DOI: 10.1016/j.jma.2022.06.005.
Y. Zhao, J. Bai, F. Xue, R. Zeng, G. Wang, P. K. Chu, and C. Chu, “Smart materials in manufacturing smart self-healing coatings on biomedical magnesium alloys : A review,” Smart Mater. Manuf., vol. 1, no. 2, p. 100022, 2023. DOI: 10.1016/j.smmf.2023.100022.
J. K. E. Tan, N. Birbilis, S. Choudhary, S. Thomas, and P. Balan, “Corrosion protection enhancement of Mg alloy WE43 by in-situ synthesis of MgFe LDH/citric acid composite coating intercalated with 8HQ,” Corros. Sci., vol. 205, p. 110444, 2022. DOI: 10.1016/j.corsci.2022.110444.
M. Ostapiuk, J. Bieniaś, M. V. Loureiro, and A. C. Marques, “The effect of self-healing on the corrosion resistance of a Mg alloy promoted by isocyanate microcapsules of polyurethane/polyurea shell,” J. Mater. Eng. Perform., vol. 6, 2025. DOI: 10.1007/s11665-025-11760-y.
A. S. Gnedenkov, V. S. Filonina, S. L. Sinebryukhov, and S. V. Gnedenkov, “A superior corrosion protection of Mg alloy via smart nontoxic hybrid inhibitor-containing coatings,” Molecules, vol. 28, no. 6, 2023. DOI: 10.3390/molecules28062538.
N. S. Grewal, U. Batra, K. Kumar, and A. Mahapatro, “Novel PA encapsulated PCL hybrid coating for corrosion inhibition of biodegradable Mg alloys: A triple-triggered self-healing response for synergistic multiple protection,” J. Magnes. Alloy., vol. 11, no. 4, pp. 1440-1460, 2023. DOI: 10.1016/j.jma.2023.01.019.
Z. Shi, F. Yang, Y. Hu, Q. Pang, L. Shi, T. Du, Y. Cao, B. Song, X. Yu, Z. Cao, Z. Ye, C. Liu, R. Yu, X. Chen, Y. Zhu, and Q. Pang, “An oxidized dextran-composite self-healing coated magnesium scaffold reduces apoptosis to induce bone regeneration,” Carbohydr. Polym., vol. 327, p. 121666, 2024. DOI: 10.1016/j.carbpol.2023.121666.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.
.png)











