Green Approaches to Extractive Metallurgy: A Novel Synthesis of Sustainable Practices

Rahadian Nopriantoko

Abstract

The realm of extractive metallurgy, a cornerstone for diverse industrial applications, has traditionally grappled with environmental challenges stemming from conventional extraction methods. This thorough literature review delves into the realm of innovative green approaches within extractive metallurgy, with the overarching goal of synthesizing sustainable practices. The introduction casts a spotlight on the environmental quandaries associated with traditional metallurgical practices, underscoring the imperative for ecologically friendly alternatives. The research methodology meticulously entails a comprehensive review of peer-reviewed literature, applying stringent criteria to handpick studies that delve into sustainable metallurgical practices. The results and discussion section intricately categorizes and dissects an array of green approaches in metal extraction, including bioleaching, ionic liquids, supercritical fluid extraction, green hydrometallurgy, electrochemical methods, and hybrid processes, providing nuanced insights into their efficacy and sustainability. Through the lens of case studies, the study sheds light on recent strides made by industries that have wholeheartedly embraced these sustainable practices, with a keen focus on unraveling their consequential environmental and economic impacts. Moreover, the study conscientiously addresses the challenges encountered in the adoption of green metallurgy and adeptly identifies latent opportunities for further development in this transformative field. The findings resonate with a resounding call for the widespread adoption of sustainable practices within extractive metallurgy, emphasizing their profound implications for both industrial application and the trajectory of future research endeavors. This expanded exploration underscores the pivotal role of environmentally conscious approaches in reshaping the landscape of extractive metallurgy, paving the way for a more sustainable and responsible future.

Keywords

Green; extraction; metallurgy; eco-friendly; sustainability

Full Text:

PDF

References

R. Pell, L Tijsseling, K. Goodenough, “Towards sustainable extraction of technology materials through integrated approaches,” Nat. Rev. Earth Environ., vol. 2, no. 10, pp. 665-679, 2021. Doi: 10.1038/s43017-021-00211-6

R. Nopriantoko, Rekayasa Sistem Termal dan Energi. CV Jejak (Jejak Publisher), 2024.

G. Chauhan, P. R. Jadhao, K. K. Pant, and K. D. P. Nigam, “Novel technologies and conventional processes for recovery of metals from waste electrical and electronic equipment: challenges & opportunities-a review,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 1288-1304, 2018. Doi:10.1016/j.jece.2018.01.032

W. Sajjad, G. Zheng, G. Din, X. Ma, M. Rafiq, and W. Xu, “Metals extraction from sulfide ores with microorganisms: the bioleaching technology and recent developments,” Trans. Indian Inst. Met., vol. 72, pp. 559-579, 2019. Doi: 10.1007/s12666-018-1516-4

C. L. Brierley and J. A. Brierley, “Progress in bioleaching: part B: applications of microbial processes by the minerals industries,” Appl. Microbiol. Biotechnol., vol. 97, no. 17, pp. 7543-7552, 2013. Doi: 10.1007/s00253-013-5095-3

D. B. Johnson, “Biomining-biotechnologies for extracting and recovering metals from ores and waste materials,” Curr. Opin. Biotechnol., vol. 30, pp. 24-31, 2014. Doi: 10.1016/j.copbio.2014.04.008

S. Mahajan, A. Gupta, and R. Sharma, “Bioleaching and biomining,” Princ. Appl. Environ. Biotechnol. a Sustain. Futur., pp. 393-423, 2017. Doi: 10.1007/978-981-10-1866-4_13

M. R. Asrami, N. N. Tran, K. D. P. Nigam, and V. Hessel, “Solvent extraction of metals: role of ionic liquids and microfluidics,” Sep. Purif. Technol., vol. 262, pp. 118289, 2021. Doi: 10.1016/j.seppur.2020.118289.

S. Prusty, S. Pradhan, and S. Mishra, “Ionic liquid as an emerging alternative for the separation and recovery of Nd, Sm, and Eu using solvent extraction technique-A review,” Sustain. Chem. Pharm., vol. 21, pp. 100434, 2021. Doi: 10.1016/j.scp.2021.100434.

A. J. Greer, J. Jacquemin, and C. Hardacre, “Industrial applications of ionic liquids,” Molecules, vol. 25, no. 21, pp. 5207, 2020. Doi: 10.3390/molecules25215207.

W. Vereycken, S. Riaño, T. Van Gerven, and K. Binnemans, “Extraction Behavior and Separation of Precious and Base Metals from Chloride, Bromide, and Iodide Media Using Undiluted Halide Ionic Liquids,” ACS Sustain. Chem. Eng., vol. 8, no. 22, pp. 8223-8234, 2020. Doi: 10.1021/acssuschemeng.0c01181.

F. Lin, D. Liu, S. Maiti Das, N. Prempeh, Y. Hua, and J. Lu, “Recent progress in heavy metal extraction by supercritical CO2 fluids,” Ind. Eng. Chem. Res., vol. 53, no. 5, pp. 1866-1877, 2014. Doi: 10.1021/ie4035708.

S. M. Fayaz, M. A. Abdoli, M. Baghdadi, and A. Karbasi, “Ag removal from e-waste using supercritical fluid: improving efficiency and selectivity,” Int. J. Environ. Stud., vol. 78, no. 3, pp. 459-473, 2021. Doi: 10.1080/00207233.2020.1834305.

Ž. Knez, M. Pantić, D. Cör, Z. Novak, and M. K. Hrnčič, “Are supercritical fluids solvents for the future?,” Chem. Eng. Process. Intensif., vol. 141, pp. 107532, 2019. Doi: 10.1016/j.cep.2019.107532.

J. Torzewski, K. Grzelak, M. Wachowski, and R. Kosturek, “Microstructure and low cycle fatigue properties of AA5083 H111 friction stir welded joint,” Materials (Basel)., vol. 13, no. 10, pp. 2381, 2020. Doi: 10.3390/ma13102381.

J. Płotka-Wasylka, M. Rutkowska, K. Owczarek, M. Tobiszewski, and J. Namieśnik, “Extraction with environmentally friendly solvents,” TrAC Trends Anal. Chem., vol. 91, pp. 12-25, 2017. Doi: 10.1016/j.trac.2017.03.006.

Y. Yao, M. Zhu, Z. Zhao, B. Tong, Y. Fan, and Z. Hua, “Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review,” ACS Sustain. Chem. Eng., vol. 6, no. 11, pp. 13611-13627, 2018. Doi: 10.1021/acssuschemeng.8b03545.

M. N. Le and M. S. Lee, “A review on hydrometallurgical processes for the recovery of valuable metals from spent catalysts and life cycle analysis perspective,” Miner. Process. Extr. Metall. Rev., vol. 42, no. 5, pp. 335-354, 2021. Doi: 10.1080/08827508.2020.1726914.

X. Li, Q. Gao, S. Jiang, C. Nie, X. Zhu, and T. Jiao, “Review on the gentle hydrometallurgical treatment of WPCBs: Sustainable and selective gradient process for multiple valuable metals recovery,” J. Environ. Manage., vol. 348, pp. 119288, 2023. Doi: 10.1016/j.jenvman.2023.119288.

V. Gunarathne, A. U. Rajapaksha, M. Vithanage, D. Alessi, R. Selvasembian, M. Naushad, “Hydrometallurgical processes for heavy metals recovery from industrial sludges,” Crit. Rev. Environ. Sci. Technol., vol. 52, no. 6, pp. 1022-1062, 2022. Doi: 10.1080/10643389.2020.1847949.

Y. Xue and Y. Wang, “Green electrochemical redox mediation for valuable metal extraction and recycling from industrial waste,” Green Chem., vol. 22, no. 19, pp. 6288-6309, 2020. Doi: 10.1039/D0GC02028A.

H. Wang, Z. Lei, X. Zhang, B. Zhou, and J. Peng, “A review of deep learning for renewable energy forecasting,” Energy Convers. Manag., vol. 198, pp. 111799, 2019. Doi: 10.1016/j.enconman.2019.111799.

L. Yang, W. Hu, Z. Chang, Tian L., D. Fang, P. Shao, H. Shi, X. Luo, “Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: Recent advances and future trends,” Environ. Int., vol. 152, pp. 106512, 2021. Doi: 10.1016/j.envint.2021.106512.

Y. Li, S. Liu, Y. Ming Chen, “Electro-deposition behavior in methanesulfonic-acid-based lead electro-refining,” J. Sustain. Metall., vol. 7, pp. 1910-1916, 2021. Doi: 10.1007/s40831-021-00467-8.

D. Pant, D. Joshi, M. K. Upreti, and R. K. Kotnala, “Chemical and biological extraction of metals present in E-waste: a hybrid technology,” Waste Manag., vol. 32, no. 5, pp. 979-990, 2012. Doi: 10.1016/j.wasman.2011.12.002.

S. Frioui, R. Oumeddour, and S. Lacour, “Highly selective extraction of metal ions from dilute solutions by hybrid electrodialysis technology,” Sep. Purif. Technol., vol. 174, pp. 264-274, 2017. Doi: 10.1016/j.seppur.2016.10.028.

S. Radi, Y. Toubi, M. El-Massaoudi, M. Bacquet, S. Degoutin, and Y. N. Mabkhot, “Efficient extraction of heavy metals from aqueous solution by novel hybrid material based on silica particles bearing new Schiff base receptor,” J. Mol. Liq., vol. 223, pp. 112-118, 2016. Doi: 10.1016/j.molliq.2016.08.024.

C. Lin, S. Lirio, Y. Chen, C. Lin, and H. Huang, “A novel hybrid metal-organic framework-polymeric monolith for solid‐phase microextraction,” Chem. Eur. J., vol. 20, no. 12, pp. 3317-3321, 2014. Doi: 10.1002/chem.201304458.

H. R. Watling, “The bioleaching of sulfide minerals with emphasis on copper sulfides-a review,” Hydrometallurgy, vol. 84, no. 1-2, pp. 81-108, 2006. Doi: 10.1016/j.hydromet.2006.05.001.

Z. Zhu, Y. Pranolo, and C. Y. Cheng, “Separation of uranium and thorium from rare earth for rare earth production - A review,” Miner. Eng., vol. 77, pp. 185-196, 2015. Doi: 10.1016/j.mineng.2015.03.012.

K. Binnemans and P. T. Jones, “Ionic liquids and deep-eutectic solvents in extractive metallurgy: Mismatch between academic research and industrial applicability,” J. Sustain. Metall., vol. 9, no. 2, pp. 423-438, 2023. Doi: 10.1007/s40831-023-00681-6.

A. Gupta and B. Basu, “Sustainable primary aluminum production: technology status and future opportunities,” Trans. Indian Inst. Met., vol. 72, pp. 2135-2150, 2019. Doi: 10.1007/s12666-019-01699-9.

S. Gupta, K. K. Pant, and G. Corder, “An environmentally benign closed-loop process for the selective recovery of valuable metals from industrial end-of-life lithium-ion batteries,” Chem. Eng. J., vol. 446, pp. 137397, 2022. Doi: 10.1016/j.cej.2022.137397.

S. Santosa, P. Livotov, A. P. Chandra Sekaran, and L. Rubianto, “Nature-Inspired Principles for Sustainable Process Design in Chemical Engineering,” in Creative Solutions for a Sustainable Development: 21st International TRIZ Future Conference, TFC 2021, Bolzano, Italy, Proceedings 21, Springer, pp. 30-41, 2021. Doi: 10.1007/978-3-030-86614-3_3.

B. Zhang, H. Gao, X. Tong, S. Liu, L. Gan, and Y. Chen, “Pressure retarded osmosis and reverse electrodialysis as power generation membrane systems,” in Current Trends and Future Developments on (Bio-) Membranes, Elsevier, 2019, pp. 133-152. Doi: 10.1016/B978-0-12-813545-7.00006-4.

J. Cao and E. Su, “Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry,” J. Clean. Prod., vol. 314, pp. 127965, 2021. Doi: 10.1016/j.jclepro.2021.127965.

L. Lajoie, A.-S. Fabiano-Tixier, and F. Chemat, “Water as green solvent: methods of solubilization and extraction of natural products-past, present and future solutions,” Pharmaceuticals, vol. 15, no. 12, pp. 1507, 2022. Doi: 10.3390/ph15121507.

A. Ivanković, A. Dronjić, A. M. Bevanda, and S. Talić, “Review of 12 principles of green chemistry in practice,” Int. J. Sustain. Green Energy, vol. 6, no. 3, pp. 39-48, 2017. Doi: 10.11648/j.ijrse.20170603.12.

L. Mammino, “Green chemistry: Chemistry working for sustainability,” in Green Chemistry and Computational Chemistry, Elsevier, 2022, pp. 41-54. Doi: 10.1016/B978-0-12-819879-7.00011-8.

B. Bridgens, K. Hobson, D. Lilley, J. Lee, J. L. Scott, and G. T. Wilson, “Closing the loop on E‐waste: A multidisciplinary perspective,” J. Ind. Ecol., vol. 23, no. 1, pp. 169-181, 2019. Doi: 10.1111/jiec.12645.

A. Pugazhendhi, S. Shobana, D. Nguyen, R. Banu, P. Siva, S. W. Chang, V. Kumar, G. Kumar, “Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production,” Int. J. Hydrogen Energy, vol. 44, no. 3, pp. 1431-1440, 2019. Doi: 10.1016/j.ijhydene.2018.11.114

P. Kasinathan, R. Pugaz, R. M. Elasavaran, V. K. Ramachandara, V. Ramanathan, S. Subram, S. Kumar, K. Nandaghopai, R. Vijaya, Sankar R. R. Devandiran, M. Alsharif, “Realization of Sustainable Development Goals with Disruptive Technologies by Integrating Industry 5.0, Society 5.0, Smart Cities and Villages,” Sustainability, vol. 14, no. 22, pp. 15258, 2022. Doi: 10.3390/su142215258.

W. Yu, W. Peng, Y. Shu, Q. Zeng, and M. Jiang, “Experimental evidence extraction system in data science with hybrid table features and ensemble learning,” in Proceedings of The Web Conference 2020, pp. 951-961, 2020. Doi: 10.1145/3366423.3380174.

M. Wu, W. Cao, X. Chen, and J. She, Intelligent optimization and control of complex metallurgical processes, vol. 3. Springer, 2020. Doi: 10.1007/978-981-15-1145-5.

T. Verevka, A. Mirolyubov, and J. Makio, “Opportunities and barriers to using big data technologies in the metallurgical industry,” in International Scientific Conference on Innovations in Digital Economy, Springer, 2020, pp. 86-102. Doi: 10.1007/978-3-030-84845-3_6.

M. A. Camilleri, “The circular economy’s closed loop and product service systems for sustainable development: A review and appraisal,” Sustain. Dev., vol. 27, no. 3, pp. 530-536, 2019. Doi: 10.1002/sd.1909.

S. H. Farjana, N. Huda, M. A. P. Mahmud, and R. Saidur, “A review on the impact of mining and mineral processing industries through life cycle assessment,” J. Clean. Prod., vol. 231, pp. 1200-1217, 2019. Doi: 10.1016/j.jclepro.2019.05.264.

H. Liu, Q. Li, G. Li, and R. Ding, “Life cycle assessment of the environmental impact of the steelmaking process,” Complexity, vol. 2020, 2020. Doi: 10.1155/2020/8863941.

M. Hofmann, H. Hofmann, C. Hagelüken, and A. Hool, “Critical raw materials: A perspective from the materials science community,” Sustain. Mater. Technol., vol. 17, p. e00074, 2018. Doi: 10.1016/j.susmat.2018.e00074.

M. Trippl, S. Baumgartinger-Seiringer, A. Frangenheim, A. Isaksen, and J. O. Rypestøl, “Unravelling green regional industrial path development: Regional preconditions, asset modification, and agency,” Geoforum, vol. 111, pp. 189-197, 2020. Doi: 10.1016/j.geoforum.2020.02.016.

J. Rybak, A. Adigamov, C. Kongar-Syuryun, M. Khayrutdinov, and Y.Tyulyaeva, “Renewable-resource technologies in mining and metallurgical enterprises providing environmental safety,” Minerals, vol. 11, no. 10, p. 1145, 2021. Doi: 10.3390/min11101145

N. Mariotti, “Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells,” Green Chem., vol. 22, no. 21, pp. 7168–7218, 2020. Doi: 10.1039/D0GC01148G.

K. Moustakas, M. Loizidou, M. Rehan, and A. S. Nizami, “A review of recent developments in renewable and sustainable energy systems: Key challenges and future perspective,” Renewable and Sustainable Energy Reviews, vol. 119. Elsevier, pp. 109418, 2020. Doi: 10.1016/j.rser.2019.109418.

S. S. de Jesus and R. Maciel Filho, “Are ionic liquids eco-friendly?” Renew. Sustain. Energy Rev., vol. 157, pp. 112039, 2022. Doi: 10.1016/j.rser.2021.112039.

C. D. Hills, N. Tripathi, and P. J. Carey, “Mineralization technology for carbon capture, utilization, and storage,” Front. Energy Res., vol. 8, pp. 142, 2020. Doi: 10.3389/fenrg.2020.00142.

P. Cavaliere and P. Cavaliere, “Carbon capture and storage: Most efficient technologies for greenhouse emissions abatement,” Clean Ironmak. Steelmak. Process. Effic. Technol. Green. Emiss. Abat., pp. 485-553, 2019. Doi: 10.1007/978-3-030-21209-4_9.

M. Gautam, B. Pandey, and M. Agrawal, “Carbon footprint of aluminum production: emissions and mitigation,” in Environmental carbon footprints, Elsevier, 2018, pp. 197-228. Doi: 10.1016/B978-0-12-812849-7.00008-8.

A. N. Manzila, T. Moyo, and J. Petersen, “A study on the applicability of Agitated cyanide leaching and thiosulphate leaching for gold extraction in artisanal and small-scale gold mining,” Minerals, vol. 12, no. 10, pp. 1291, 2022. Doi: 10.3390/min12101291.

J. McNeice, H. Mahandra, and A. Ghahreman, “Application of Biogenic Thiosulfate Produced by Methylophaga sulfidovorans for Sustainable Gold Extraction,” ACS Sustain. Chem. Eng., vol. 10, no. 30, pp. 10034–10046, 2022. Doi: 10.1021/acssuschemeng.2c02872.

M. Soleymani Naeini, “Electrochemical study of gold thiosulfate extraction process.” 2022.

P. Torkaman, “Study of unconventional techniques to eliminate mercury use from artisanal gold mining operations.” University of British Columbia, 2023.

E. Jorjani and H. A. Sabzkoohi, “Gold leaching from ores using biogenic lixiviants–A review,” Curr. Res. Biotechnol., vol. 4, pp. 10–20, 2022. Doi: 10.1016/j.crbiot.2021.12.003.

A. P. Ratvik, R. Mollaabbasi, and H. Alamdari, “Aluminium production process: from Hall–Héroult to modern smelters,” ChemTexts, vol. 8, no. 2, p. 10, 2022. Doi: 10.1007/s40828-022-00162-5.

Y. He, K. Zhou, Y. Zhang, H. Xiong, and L. Zhang, “Recent progress of inert anodes for carbon-free aluminum electrolysis: a review and outlook,” J. Mater. Chem. A, vol. 9, no. 45, pp. 25272-25285, 2021. Doi: 10.1039/D1TA07198J.

W. Wu, S. An, C.-H. Wu, S.-B. Tsai, and K. Yang, “An empirical study on green environmental system certification affects financing cost of high energy consumption enterprises-taking metallurgical enterprises as an example,” J. Clean. Prod., vol. 244, pp. 118848, 2020. Doi: 10.1016/j.jclepro.2019.118848.

E. Matinde, G. S. Simate, and S. Ndlovu, “Mining and metallurgical wastes: a review of recycling and re-use practices,” J. South. African Inst. Min. Metall., vol. 118, no. 8, pp. 825-844, 2018. Doi: 10.17159/2411-9717/2018/v118n8a5.

B. Debnath, R. Chowdhury, and S. K. Ghosh, “Sustainability of metal recovery from E-waste,” Front. Environ. Sci. Eng., vol. 12, pp. 1-12, 2018. Doi: 10.1007/s11783-018-1044-9.

L. A. Cisternas, J. I. Ordóñez, R. I. Jeldres, and R. Serna-Guerrero, “Toward the implementation of circular economy strategies: An overview of the current situation in mineral processing,” Miner. Process. Extr. Metall. Rev., vol. 43, no. 6, pp. 775-797, 2022. Doi: 10.1080/08827508.2021.1946690.

L. Holappa, M. Kekkonen, A. Jokilaakso, and J. Koskinen, “A review of circular economy prospects for stainless steelmaking slags,” J. Sustain. Metall., vol. 7, no. 3, pp. 806-817, 2021. Doi: 10.1007/s40831-021-00392-w

L. H. Xavier, M. Ottoni, and L. P. P. Abreu, “A comprehensive review of urban mining and the value recovery from e-waste materials,” Resour. Conserv. Recycl., vol. 190, pp. 106840, 2023. Doi: 10.1016/j.resconrec.2022.106840.

A. Lukowiak, L. Zur, R. Tomala, T. N. Lamtran, A. Bouajaj, W. Strek, G. C. Righini, M. Wickleder, M. Ferrari, “Rare earth elements and urban mines: Critical strategies for sustainable development,” Ceram. Int., vol. 46, no. 16, pp. 26247-26250, 2020. Doi: 10.1016/j.ceramint.2020.03.067

A. P. Paiva and C. A. Nogueira, “Ionic liquids in the extraction and recycling of critical metals from urban mines,” Waste and Biomass Valorization, vol. 12, pp. 1725-1747, 2021.

Copyright (c) 2024 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.