Recovery of Manganese from Manganese Ore Reductive Acid Leaching Process Using Reeds (Imperata Cylindrica) as Reducing Agent

Lalu Suhaimi, Samsul Bahtiar, Andi Sarina, Khairunnisya Khairunnisya

Abstract

Recovery of manganese from manganese ores was investigated by reductive leaching method using reeds as a reductant in the sulfuric acid medium. Cellulose, hemicellulose, and lignin are natural reducing agents which are widely used as reducing agents to recover manganese. Effects of calcination temperature and the holding time calcination on the leaching efficiency of manganese and impurities were examined. The calcination temperature and the holding time calcination have a significant effect on the extraction of manganese. The experimental results demonstrated that the higher the calcination temperature used, the higher the percentage of manganese obtained, namely 79.58% and 87.38%, respectively. The XRD (x-ray diffraction) pattern shows that the manganese phases formed at 700 and 800 °C are Mn3O4 (hausmannite) and Mn2O3 (bixbite), respectively. The morphology in the sample with calcination temperature at 700 °C showed agglomerate- shaped particles and unevenly dispersed. Meanwhile, the sample with calcination temperature at 800 °C  exhibited agglomerated particles of inhomogeneous size and were more evenly distributed. Variation of holding time in the manganese ores recovery process also affects the results of manganese recovery. The composition of the manganese recovery in the samples using holding time calcination variations of 3 and 4 hours was 83.88% and 89.24%, respectively. The results of the XRD analysis showed that the manganese phase formed using 3 hours of calcination holding time was dominated by Mn3O(hausmannite). Meanwhile, the manganese phase formed using 4 hours of holding time of calcination was dominated by Mn2O3 (bixbite).

Keywords

reeds; manganese; reductant; Mn3O4 (haussmannite); Mn2O3 (bixbite)

Full Text:

PDF

References

C. Sudjoko, “Strategi pemanfaatan kendaraan listrik berkelanjutan sebagai solusi untuk mengurangi emisi karbon,” Jurnal Paradigma: Jurnal Multidisipliner Mahasiswa Pascasarjana Indonesia, vol. 2, no. 2, pp. 54-68, 2021. Doi: 10.22146/jpmmpi.v2i2.70354

V. Mathew, B. Sambandam, S. Kim, K. Sungjin, S. Park, S. Lee, M. H. Alfaruqi, V. Soundhararajan, S. Islam, D. Y. Putro, J. Y. Hwang, Y. K. Sun, and K. Jaekook, “Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: a focused view on performance, mechanism, and developments,” ACS Energy Lett., vol. 5, no. 7, pp. 2376-2400, 2020. Doi: 10.1021/acsenergylett.0c00740.

M. H. Alfaruqi., S. Islam, D. Y. Putro, V. Mathew, S. Kim, J. Jo, K. Seokhun, Y. K. Sun, K. Kwangho, and K. Jaekook, “Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery,” Electrochim. Acta, vol. 276, pp. 1-11, 2018. Doi:10.1016/j.electacta.2018.04.139.

S. Islam, M.H. Alfaruqi, J. Song, S. Kim, D.T.Pham, J. Jo, K. Seokhun, V. Mathew, J.P. Baboo, Z. Xiu and K. Jaekook, " Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications, " Journal of energy chemistry, vol. 276, pp. 815-819, 2017.

R. Farzana, K. Hassan, and V. Shajwalla, " Manganese oxide synthesized from spent Zn-C battery for supercapacitor electrode application," scientific reports, vol. 9, pp. 1-12, 2019.

M. J. Pereira, M. M. F. Lima, and R. M. F. Lima, “Calcination and characterisation studies of a Brazilian manganese ore tailing,” Int. J. Miner. Process., vol. 131, pp. 26-30, 2014. Doi:10.1016/j.minpro.2014.08.003.

F. F. Wu, H. Zhong, S. Wang, and S. F. Lai, “Kinetics of reductive leaching of manganese oxide ore using cellulose as reductant,” J. Cent. South Univ., vol. 21, no. 5, pp. 1763-1770, 2014. Doi:10.1007/s11771-014-2122-1.

S. Xiong , X. Lia, P. Liua, S. Haoa, F. Haoa, Z. Yinb, and J. Liu “Recovery of manganese from low-grade pyrolusite ore by reductively acid leaching process using lignin as a low cost reductant,” Miner. Eng., vol. 125, pp. 126-132, 2018. Doi: 10.1016/j.mineng.2018.06.003.

S. Ali, Y. Iqbal, K. Ahmad, and B. Afridi, “Phase, microstructure and beneficiation of manganese ore by acid leaching,” Journal of Minerals and Materials Characterization and Engineering, vol. 6, no.1. pp. 60-71, 2018. Doi:10.4236/jmmce.2018.61006.

S. D. Kartikasari, S. Nurhatika, and A. Muhibuddin, “Potensi alang-alang (Imperata cylindrica) dalam produksi etanol menggunakan bakteri zymomonas mobilis,” Jurnal Sains dan Seni ITS, vol. 2, no. 2, 2013. Doi:10.12962/j23373520.v2i2.3741.

L. Lan, Q. Li, G. Gu, H. Zhang, and B. Liu, “Hydrothermal synthesis of γ-MnOOH nanorods and their conversion to MnO2, Mn2O3, and Mn3O4 nanorods,” J. Alloys Compd., vol. 644, pp. 430-437, 2015. Doi: 10.1016/j.jallcom.2015.05.078.

I. W. Eltara, F. Widyawati, S. Bahtiar, and S. Hidayat, “Sintesis manganese ferrite dengan metode mechanical alloying dari bijih mangan alam,” Hexagon Jurnal Teknik dan Sains, vol. 3, no. 1, pp. 29-33, 2022. Doi:10.36761/hexagon.v3i1.1345.

Copyright (c) 2023 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.