Synthesis of Tin Oxide Nanocrystallites with Various Calcination Temperatures Using Co-Precipitation Method with Local Tin Chloride Precursor

Norbert Egan Christo Panthoko, Fairuz Septiningrum, Akhmad Herman Yuwono, Eka Nurhidayah, Fakhri Akbar Maulana, Nofrijon Sofyan, Donanta Dhaneswara, Latifa Hanum Lalasari, Tri Arini, Lia Andriyah, Florentinus Firdiyono, Yahya Winda Ardianto, Ria Wardhani Pawan

Abstract

Indonesia is one of the largest tin metal producers in the world, and one of its derivative products is tin chloride (SnCl4). This material has been used as a raw ingredient for the production of organotin compounds such as methyltin mercaptide for PVC (polyvinyl chloride) plastic industry as a heat stabilizer. On the other hand, this precursor can be used to synthesize SnO2 nanomaterials, which have other strategic potentials, including photocatalysts and solar cell applications. In this study, the synthesis of SnO2 nanocrystallites was carried out using a local tin chloride precursor via the co-precipitation method, followed by a calcination process at temperatures of 300, 400, 500, and 600 °C, for further usage as an ETL (electron transport layer) in a PSC (perovskite solar cell) device. The basic properties characterization was carried out using XRD (X-ray diffraction), ultraviolet-visible (UV-Vis) spectroscopy, and SEM (scanning electron microscopy), while the photocurrent-voltage (I-V) curve photovoltaic performance of the device was performed using a semiconductor parameter analyzer. The characterization results showed that increasing the calcination temperature from 300 to 600 °C increased the average crystallite size from 1.19 to 13.75 nm and decreased the band gap energy from 3.57 to 3.10 eV. The highest PCE (power conversion efficiency) was obtained from the device fabricated with SnOnanocrystallites calcined at a temperature of 300 °C, which was 0.0024%. This result was obtained due to the highest transmittance of this sample as compared to others; the higher the transmittance, the better the performance of the ETL, which in turn increased the overall efficiency of the PSC

Keywords

SnO2 nancrystallites; co-precipitation method; calcination temperature; electron transport layer; perovskite solar cell

Full Text:

PDF

References

J. E. Hulla, S. C. Sahu, and A. W. Hayes, “Nanotechnology: History and future,” Hum. Exp. Toxicol., vol. 34, no. 12, pp. 1318-1321, 2015. Doi: 10.1177/0960327115603588.

W. Chen, Q. Zhou, F. Wan, and T. Gao, “Gas sensing properties and mechanism of nano-SnO2-based sensor for hydrogen and carbon monoxide,” J. Nanomater., vol. 2012, no. 612420, 2012. Doi: 10.1155/2012/612420.

C. P. Wu, K. X. Xie, J. P. He, Q. P. Wang, J. M. Ma, S. Yang, and Q. H. Wang, “SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance,” Rare Met., vol. 40, no. 1, pp. 48-56, 2021. Doi: 10.1007/s12598-020-01623-x.

H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, and S. I. Seok, “Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes,” Nature, vol. 598, no. 7881, pp. 444-450, 2021. Doi:10.1038/s41586-021-03964-8.

PT. Timah Tbk.,” Membangun ketahanan dan meraih performa progresif,” Laporan Tahunan Annual Report 2021. Available: https://timah.com/userfiles/post/220428626A5287E3839.pdf. [Diakses tanggal: 26 Juli 2022]

Pusat Pengkajian Industri Proses dan Energi (PPIPE),” Outlook energi Indonesia 2021 perspektif teknologi energi Indonesia: Tenaga surya untuk penyediaan energi charging station,” Badan Pengkajian dan Penerapan Teknologi (BPPT). Jakarta. Available: https://www.bppt.go.id/dokumen/file/865/download [Diakses tanggal: 26 Juli 2022]

Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, and J. You, “Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2 PbI3-based perovskite solar cells,” Nat. Energy, vol. 2, no. 1, 2017. Doi:10.1038/nenergy.2016.177.

G. Yang, P. Qin, G. Fang, and G. Li, “Tin oxide (SnO2) as effective electron selective layer material in hybrid organic-inorganic metal halide perovskite solar cells,” J. Energy Chem., vol. 27, no. 4, pp. 962-970, 2018. Doi: 10.1016/j.jechem.2018.03.018.

S. Tazikeh, A. Akbari, A. Talebi, and E. Talebi, “Synthesis and characterization of tin oxide nanoparticles via the co-precipitation method,” Mater. Sci. Pol., vol. 32, no. 1, pp. 98-101, 2014. Doi: 10.2478/s13536-013-0164-y.

C. Karunakaran, S. Sakthi Raadha, and P. Gomathisankar, “Microstructures and optical, electrical and photocatalytic properties of sonochemically and hydrothermally synthesized SnO2 nanoparticles,” J. Alloys Compd., vol. 549, pp. 269-275, 2013. Doi: 10.1016/j.jallcom.2012.09.035.

Ł. Haryński, A. Olejnik, K. Grochowska, and K. Siuzdak, “A facile method for Tauc exponent and corresponding electronic transitions determination in semiconductors directly from UV–Vis spectroscopy data,” Opt. Mater. (Amst)., vol. 127, 2022. Doi: 10.1016/j.optmat.2022.112205.

Y. Wang, L. Tan, and L. Wang, “Hydrothermal synthesis of SnO2 nanostructures with different morphologies and their optical properties,” J. Nanomater., vol. 2011, no. 529874, 2011. Doi: 10.1155/2011/529874.

N. Sofyan, A. Ridhova, Salman, A. H. Yuwono, and A. Udhiarto, “Synthesis and characterization of nano rosette TiO2 and CH3NH3PbCl2I for potential use in perovskite solar cell,” IOP Conf. Ser. Mater. Sci. Eng., vol. 541, no. 1, 2019. Doi:10.1088/1757-899X/541/1/012048.

S. Günes, and N. S. Sariciftci, “Hybrid solar cells,” Inorganica Chim. Acta, vol. 361, no. 3, pp. 581-588, 2008. Doi: 10.1016/j.ica.2007.06.042.

P. Khaenamkaew, D. Manop, C. Tanghengjaroen, and W. P. N. Ayuthaya, “Crystal structure, lattice strain, morphology, and electrical properties of SnO2 nanoparticles induced by low calcination temperature,” Adv. Mater. Sci. Eng., vol. 2020, no. 3852421, 2020. Doi: 10.1155/2020/3852421.

R. Viter, A. Katoch, and S. S. Kim, “Grain size dependent bandgap shift of SnO2 nanofibers,” Met. Mater. Int., vol. 20, no. 1, pp. 163-167, 2014. Doi: 10.1007/s12540-013-6027-6.

S. Mehraj, M. S. Ansari, and A. A. Al-ghamdi, “Annealing dependent oxygen vacancies in SnO2 nanoparticles: structural, electrical and their ferromagnetic behavior,” Mater. Chem. Phys., vol. 171, pp. 109-118, 2016. Doi: 10.1016/j.matchemphys.2015.12.006.

J. Ungula, B. F. Dejene, and H. C. Swart, “Effect of pH on the structural, optical and morphological properties of Ga-doped ZnO nanoparticles by reflux precipitation method,” Phys. B Condens. Matter, vol. 535, pp. 251-257, 2018. Doi:10.1016/j.physb.2017.07.052.

V. B. Kamble, and A. M. Umarji, “Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals,” AIP Adv., vol. 3, no. 8, 2013. Doi: 10.1063/1.4819451.

Y. Chen, Q. Meng, L. Zhang, C. Han, H. Gao, Y. Zhang, and H. Yan, “SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress,” J. Energy Chem., vol. 35, pp. 144-167, 2019. Doi: 10.1016/j.jechem.2018.11.011.

D. F. Swinehart, “The beer-lambert law,” J. Chem. Educ., vol. 39, no. 7, pp. 333, 1962.

J. Divya, A. Pramothkumar, S. J. Gnanamuthu, D. C. B. Victoria, and P. C. J. Prabakar, “Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via co-precipitation approach,” Phys. B Condens. Matter, vol. 588, no. 2019, pp. 412169, 2020. Doi: 10.1016/j.physb.2020.412169.

J. Liu, N. Li, Q. Dong, J. Li, C. Qin, and L. Wang, “Tailoring electrical property of the low-temperature processed SnO2 for high-performance perovskite solar cells,” Sci. China Mater., vol. 62, no. 2, pp. 173-180, 2019. Doi:10.1007/s40843-018-9305-6.

M. Lv, X. Dong, X. Fang, B. Lin, S. Zhang, X. Xu, J. Ding, and N. Yuan, “Improved photovoltaic performance in perovskite solar cells based on CH3NH3PbI3 films fabricated under controlled relative humidity,” RSC Adv., vol. 5, no. 114, pp. 93957-93963, 2015. Doi:10.1039/c5ra14587b.

D. Wang, J. Zheng, X. Wang, J. Gao, W. Kong, C. Cheng, and B. Xu, “Improvement on the performance of perovskite solar cells by doctor-blade coating under ambient condition with hole-transporting material optimization,” J. Energy Chem., vol. 38, pp. 207-213, 2019. Doi:10.1016/j.jechem.2019.03.023.

Copyright (c) 2023 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.