EFFECT NICKEL AND QUENCH-TEMPER PROCESS ON MECHANICAL AND CORROSION PROPERTIES OF ASTM A588 WAETHERING STEEL

Miftakhur - Rohmah, Gilang Ramadhan, Dedi Irawan, Dedi Pria Utama, Toni Bambang Romijarso

Abstract

The mechanical improvement and "self-protection" properties are mainly needed to develop weather-resistant steel materials. In this study, A588 steel was given thermomechanical treatment (hot-rolling) followed by a quench-tempering process. The A588 is modified by adding 1, 2, and 3 wt% nickel to the primary alloy. Steel is made using a hot rolling process at 750 ℃ for 1 hour with 70% thickness reduction. The sample is heat-treated at 850 ℃ for 1 hour and quenched in water, oil, and open air. The tempering process is conducted at 400 ℃ for 30 minutes. Metallography test is confirmed final microstructural and compared with CCT simulation result. The fast cooling (water and oil quenchant) produces tempered martensite, ferrite, and pearlite, while the air-cooled forms a ferrite-pearlite. The cooling rate significantly affects strength and hardness and the nickel addition on hardness, and both factors have no significant on ductility. The sample owns the highest tensile strength value (~1226 MPa) with 1 %Ni, and the highest ductility value (around 17.1–27.43%) is obtained by air cooling. With 3% Ni, the corrosion rate decreases to 0072 mpy with -432.5 mV for corrosion potential and 0.12µA/cm-2 for current density. 

Full Text:

PDF

References

J. Jia, Z. Liu, X. Cheng, C. Du, and X. Li, “Development and optimization of Ni-advanced weathering steel: A review,” Corros. Commun., vol. 2, pp. 82–90, 2021, doi: 10.1016/j.corcom.2021.09.003.

M. Morcillo, I. Díaz, H. Cano, B. Chico, and D. de la Fuente, “Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts,” Constr. Build. Mater., vol. 213, pp. 723–737, 2019, doi: 10.1016/j.conbuildmat.2019.03.334.

X. Cheng, Z. Jin, M. Liu, and X. Li, “Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres,” Corros. Sci., vol. 115, pp. 135–142, 2017, doi: 10.1016/j.corsci.2016.11.016.

S. . Tukur, M. M. Usman, I. Muhammad, and N. A. Sulaiman, “Effect of Tempering Temperature on Mechanical Properties of Medium Carbon Steel,” Int. J. Eng. Trends Technol., vol. 9, no. 15, pp. 798–800, 2014, doi: 10.14445/22315381/ijett-v9p350.

Y. K. Bao, M. Wu, K. X. Liu, Y. Y. Feng, and X. M. Zhao, “Effect of Tempering Temperature on Carbide Precipitation and Mechanical Properties of Marine Atmospheric Corrosion Resistant Steel,” J. Mater. Eng. Perform., 2021, doi: 10.1007/s11665-021-06335-6.

D. Ning et al., “Carbide precipitation and coarsening kinetics in low carbon and low alloy steel during quenching and subsequently tempering,” Mater. Charact., vol. 176, no. April, 2021, doi: 10.1016/j.matchar.2021.111111.

M. Rohmah, D. Irawan, D. P. Utama, and T. B. Romijarso, “Pengembangan Baja Laterit Modifikasi A588 Menggunakan Proses Termomekanikal Diikuti dengan Proses Temper Temperatur Rendah untuk Aplikasi Baja Tahan Cuaca,” TEKNIK, vol. 42, no. 2, pp. 149–159, 2021, doi: 10.14710/teknik.

C. Zhu, X. Y. Xiong, A. Cerezo, R. Hardwicke, G. Krauss, and G. D. W. Smith, “Three-dimensional atom probe characterization of alloy element partitioning in cementite during tempering of alloy steel,” Ultramicroscopy, vol. 107, no. 9, pp. 808–812, 2007, doi: 10.1016/j.ultramic.2007.02.033.

Ş. H. Atapek, Ş. Polat, and S. Zor, “Effect of tempering temperature and microstructure on the corrosion behavior of a tempered steel,” Prot. Met. Phys. Chem. Surfaces, vol. 49, no. 2, pp. 240–246, 2013, doi: 10.1134/S2070205113020111.

A. Kalhor, M. Soleimani, H. Mirzadeh, and V. Uthaisangsuk, “A review of recent progress in mechanical and corrosion properties of dual phase steels,” Arch. Civ. Mech. Eng., vol. 20, no. 3, pp. 1–14, 2020, doi: 10.1007/s43452-020-00088-0.

H. Martin, P. Amoako-Yirenkyi, A. Pohjonen, N. K. Frempong, J. Komi, and M. Somani, “Statistical Modeling for Prediction of CCT Diagrams of Steels Involving Interaction of Alloying Elements,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 52, no. 1, pp. 223–235, 2021, doi: 10.1007/s11663-020-01991-w.

R. Neugebauer, A. Rautenstrauch, and E. Meza-García, “Influence of the alloying elements on phase transitions of high strength steels,” Adv. Mater. Res., vol. 337, pp. 358–362, 2011, doi: 10.4028/www.scientific.net/AMR.337.358.

H. Y. Dong, C. Y. Hu, G. H. Wu, K. M. Wu, and R. D. K. Misra, “A Effect of nickel on hardening behavior and mechanical properties of nanostructured bainite-austenite steels,” Mater. Sci. Eng., vol. 817, no. May, p. 141410, 2021, doi: 10.1016/j.msea.2021.141410.

Z. Yao, W. Dai, B. Cai, C. Li, H. Zhang, and Y. Zhang, “Effect of Quenching Temperature on Tensile Strength and Fatigue Behavior of an EA4T Steel,” J. Mater. Eng. Perform., vol. 30, no. 12, pp. 9015–9028, 2021, doi: 10.1007/s11665-021-06117-0.

H. Jo et al., “Effects of cooling rate during quenching and tempering conditions on microstructures and mechanical properties of carbon steel flange,” Materials (Basel)., vol. 13, no. 18, pp. 1–16, 2020, doi: 10.3390/MA13184186.

B. Laxmi, S. Sharma, J. PK, and A. Hegde, “Quenchant oil viscosity and tempering temperature effect on mechanical properties of 42CrMo4 steel,” J. Mater. Res. Technol., vol. 16, pp. 581–587, 2022, doi: 10.1016/j.jmrt.2021.11.152.

P. Singh and S. Singh, “Effect of quenching media on microstructural evolution, mechanical and wear properties of AISI4135 steel,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 235, no. 21, pp. 5616–5625, 2021, doi: 10.1177/0954406221990050.

M. Grade and L. Carbon, “The Effect of Nickel Contents on the Microstructure Evolution Deposited Metal,” Crystals, vol. 11, no. 709, pp. 1–16, 2021.

C. G. Norwood, “The Effect of Nickel Content on The Mechanical Properties and Microstructure of a High Toughness Secondary Hardening Steel,” 2016.

D. Zhang et al., “Effect of Tempered Martensite and Ferrite/Bainite on Corrosion Behavior of Low Alloy Steel Used for Flexible Pipe Exposed to High-Temperature Brine Environment,” J. Mater. Eng. Perform., vol. 27, no. 9, pp. 4911–4920, 2018, doi: 10.1007/s11665-018-3587-0.

N. Alharthi, E. S. M. Sherif, H. S. Abdo, and S. Z. El Abedin, “Effect of Nickel Content on the Corrosion Resistance of Iron-Nickel Alloys in Concentrated Hydrochloric Acid Pickling Solutions,” Adv. Mater. Sci. Eng., vol. 2017, 2017, doi: 10.1155/2017/1893672.

Z. Li, W. Xue, Y. Chen, W. Yu, and K. Xiao, “Microstructure and Grain Boundary Corrosion Mechanism of Pearlitic Material,” J. Mater. Eng. Perform., vol. 31, no. 1, pp. 483–494, 2022, doi: 10.1007/s11665-021-06171-8.

I. Bösing, I. Bobrov, J. Epp, M. Baune, and J. Thöming, “Influence of systematically changed martensite content on the passive film properties of austenitic stainless steel in neutral electrolyte,” Int. J. Electrochem. Sci., vol. 15, no. 1, pp. 319–333, 2020, doi: 10.20964/2020.01.09.

Copyright (c) 2022 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.