PENGARUH PENAMBAHAN MAGNESIUM TERHADAP SIFAT MEKANIK, MIKROSTRUKTUR DAN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY POLIMER PLA/ABS UNTUK MATERIAL IMPLAN BIOABSORBABEL
Abstract
Pada penelitian ini telah dilakukan pembuatan implan bioabsorbable dengan bahan polimer logam komposit (PLA/ABS/Mg) dengan menggunakan metode solvent casting dengan tiga komposisi yakni PLA:ABS 70:30, 60:40, 80:20 dengan komposisi Mg masing-masing 5%, 10% dan 15% kemudian dilarutkan dengan clorofoam sebanyak 17 mL sehingga mendapatkan sampel berbentuk film. Penelitian ini bertujuan untuk mengetahui variasi optimal PLA/ABS terhadapat karakterisitik sifat mekanik, morfologi, impedansi dengan adanya penambahan Mg. Hasil karakterisasi sifat mekanik menggunakan uji tarik dengan komposisi PLA:ABS 80:20 pada variasi Mg 10% dan 15% menunjukkan hasil yang optimal, sehingga Mg terbukti meningkatkan sifat mekanik dari PLA. Semakin banyak penambahan variasi Mg menunjukkan peningkatan nilai kekerasan vikers dan impedansi pada polimer logam komposit. Hasil pengamatan dengan menggunakan SEM pada kompoisi PLA:ABS 70:30 menunjukan bahwa homogenitas Mg didalam polimer telah tercapai dengan baik.
Full Text:
PDFReferences
S. V Gohil, S. Suhail, J. Rose, T. Vella, and L. S. Nair, “Polymers and Composites for Orthopedic Applications,” Elsevier Inc., 2020.
E. Göktürk and H. Erdal, “Biomedical applications of polyglycolic acid ( PGA ) Poliglikolik Asit ’ in ( PGA ) Biyomedikal uygulamaları,” vol. 21, no. 6, pp. 1237–1244, 2017, doi: 10.16984/saufenbilder.283156.
X. Li et al., “Biomaterials Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires,” vol. 49, pp. 135–144, 2015, doi: 10.1016/j.biomaterials.2015.01.060.
S. Park, E. Lih, K. Park, Y. Ki, and D. Keun, “Progress in Polymer Science Biopolymer-based functional composites for medical applications,” Prog. Polym. Sci., vol. 68, pp. 77–105, 2017, doi: 10.1016/j.progpolymsci.2016.12.003.
N. Ali et al., “To Develop a Biocompatible and Biodegradable Polymer-Metal Composite with Good ; Mechanical and Drug Release Properties,” J. Mater. Sci. Eng., vol. 5, no. 5, 2016, doi: 10.4172/2169-0022.1000274.
G. U. O. Baolin and M. A. P. X, “Synthetic biodegradable functional polymers for tissue engineering : a brief review,” vol. 57, no. 4, pp. 490–500, 2014, doi: 10.1007/s11426-014-5086-y.
X. Li et al., “Acta Biomaterialia In vitro degradation kinetics of pure PLA and Mg / PLA composite : Effects of immersion temperature and compression stress,” Acta Biomater., vol. 48, pp. 468–478, 2017, doi: 10.1016/j.actbio.2016.11.001.
K. Aoki and N. Saito, “Biodegradable Polymers as Drug Delivery Systems for Bone Regeneration,” pp. 1–19, 2020, doi: 10.3390/pharmaceutics12020095.
F. Bensiamar, B. Olalde, and S. C. Cifuentes, “Antibacterial effect of novel biodegradable and bioresorbable PLDA / Mg composites.”
A. Ferrández-Montero et al., “Development of biocompatible and fully bioabsorbable PLA/Mg films for tissue regeneration applications,” Acta Biomater., vol. 98, pp. 114–124, 2019, doi: 10.1016/j.actbio.2019.05.026.
C. Zhao, H. Wu, J. Ni, S. Zhang, and X. Zhang, “Development of PLA/Mg composite for orthopedic implant: Tunable degradation and enhanced mineralization,” Compos. Sci. Technol., 2017, doi: 10.1016/j.compscitech.2017.04.037.
M. Ziabka, M. Dziadek, and E. Menaszek, “Biocompatibility of poly(acrylonitrile-butadiene-styrene) nanocomposites modified with silver nanoparticles,” Polymers (Basel)., vol. 10, no. 11, pp. 1–13, 2018, doi: 10.3390/polym10111257.
Y. Sasaki and O. Yamamoto, “Bacterial adsorption effect of smectite for wound-healing application,” pp. 710–712, 2017.
Y. Sasaki, G. A. Sathi, and O. Yamamoto, “Wound healing effect of bioactive ion released from Mg-smectite,” Mater. Sci. Eng. C, vol. 77, pp. 52–57, 2017, doi: 10.1016/j.msec.2017.03.236.
N. Zhao, D. Zhu, N. C. Agricultural, F. Revolutionizing, M. Biomaterial, and N. C. Agricultural, “Biphasic reaponses of human vasculer smooth muscle cells to magnesiom ion,” J Biomed Mater Res A, vol. 104, no. 2, pp. 347–356, 2017, doi: 10.1002/jbm.a.35570.Biphasic.
G. Manivasagam and S. Suwas, “Biodegradable Mg and Mg based alloys for biomedical implants,” Mater. Scince Technol., vol. 30, no. 5, pp. 515–520, 2014, doi: 10.1179/1743284713Y.0000000500.
Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Mater. Sci. Eng. R, vol. 87, pp. 1–57, 2015, doi: 10.1016/j.mser.2014.10.001.
J. M. Carbajo and F. Maraver, “Salt water and skin interactions : new lines of evidence,” 2018.
E. Proksch et al., “Bathing in a magnesium-rich Dead Sea salt solution improves skin barrier function , enhances skin hydration , and reduces inflammation in atopic dry skin,” Int. J. Dermatol., pp. 151–157, 2005.
J. Vormann, “Magnesium: Nutrition and metabolism,” Molecular Aspects of Medicine, vol. 24, no. 1–3. pp. 27–37, 2003, doi: 10.1016/S0098-2997(02)00089-4.
M. C. Fernández-Calderón et al., “Impact of PLA/Mg films degradation on surface physical properties and biofilm survival,” Colloids Surfaces B Biointerfaces, 2019, doi: 10.1016/j.colsurfb.2019.110617.
T. Polipropilen, P. P. Dan, K. Sari, R. Satoto, and K. Sari, “Analisis Korelasi Kondisi Pembuatan Film,” vol. 13, no. 2, pp. 27–38, 2010.
Asep Hermanto, “Pemanfaatan Bahan Limbah Permesinan Magnesium Untukaplikasi Baut Tulang Mampu Terdegradasi (Biodegradable Bone Screw) Dengan Metodologi Serbuk Logam (Powder Metallurgy),” 2017.
R. Vadori, M. Misra, and A. K. Mohanty, “Sustainable biobased blends from the reactive extrusion of polylactide and acrylonitrile butadiene styrene,” J. Appl. Polym. Sci., 2016, doi: 10.1002/app.43771.
M. I. Maulana, I. Syahbanu, and Harlia, “SINTESIS DAN KARAKTERISASI MATERIAL KONDUKTIF FILM KOMPOSIT POLIPIROL (PPy)/ SELULOSA BAKTERI,” Jkk, vol. 6, no. 3, pp. 11–18, 2017.
A. M. NUREZA, “ANALISIS PENGARUH KOMPOSISI GLYCINE PADA PROSES SINTESA ANODA Fe2O3 UNTUK APLIKASI BATERAI ION LITHIUM,” 2017.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.