Karakterisasi Tingkat Degradasi Superalloy Udimet 520 Pada Sudu Putar Turbin Pembangkit Listrik Tenaga Gas [Characteristic Degradation Level of Superalloy Udimet 520 of Rotating Blade of a Gas Turbine Power Plant]

Dewa Nyoman Adnyana

Abstract

First stage rotating blades of a gas turbine power plant having design capacity of 130 MW have been in operation for more than 50.000 hours. The blade material was made of Udimet 520, a Ni- based superalloys. During its operation, the turbine blades may have been subjected to degradation due to several damage mechanisms such as thermal aging, creep, fatigue, corrosion and/or erosion. The aim of this examination was to determine the degree of degradation and the possibility of future service continuation of the turbine blades. A post-service first stage turbine blade was dismounted from the engine rotor and used for examination. Various laboratory examinations were performed including chemical analysis, metallographic examination, hardness testing and creep testing. Results of the examination obtained showed that the turbine blade material has not been experiencing some significant morphology change in microstructure due to thermal aging, either on the matrix austenite phase (g) and precipitate of gamma prime (g') or on the carbide phase particles. In addition, the level of creep resistance of the turbine blade material was still higher than the minimum creep property of the Udimet 520. Furthermore, the degree of degradation due to corrosion and/or oxidation occurred on most of the blade exterior in general was considered low. Based on this condition, the first stage gas turbine blades were considered serviceable.

 

Abstrak

Sudu putar turbin tingkat pertama pada sebuah unit pembangkit listrik tenaga gas (PLTG) dengan kapasitas terpasang 130 MW telah dioperasikan selama lebih dari 50.000 jam. Menurut data desain, material sudu  turbin dibuat dari paduan super berbasis Ni dengan spesifikasi Udimet 520. Selama pengoperasiannya, sudu turbin diperkirakan mengalami degradasi akibat sejumlah mekanisme kegagalan yang terjadi seperti: thermal aging, creep, fatik, korosi, dan/atau erosi. Pengujian yang dilakukan ini bertujuan untuk menentukan tingkat degradasi dan kelayakan sudu turbin untuk kelanjutan pengoperasiannya diwaktu yang akan datang. Sebuah sudu turbin tingkat pertama dilepas dari rotor unit PLTG untuk digunakan dalam pengujian ini. Sebelum melakukan pengujian, sudu turbin tersebut dibelah menjadi 2 (dua) bagian, dimana salah satu belahan diberi proses heat-treatment. Sejumlah pengujian laboratorium telah dilakukan meliputi analisa kimia, uji metalografi, uji kekerasan dan uji creep. Hasil pengujian menunjukkan bahwa material sudu turbin belum mengalami perubahan yang berarti pada morfologi struktur mikro akibat thermal aging, baik pada matrik fasa austenit (g) dan partikel/presipitat fasa  gamma prime (g') Ni3 (Al,Ti) maupun pada fasa karbida. Disamping itu tingkat ketahanan creep material sudu turbin terlihat masih lebih tinggi jika dibandingkan dengan sifat ketahanan creep minimum material standar Udimet 520. Lebih jauh, tingkat degradasi akibat korosi dan/atau oksidasi yang terjadi pada permukaan luar sudu turbin pada umumnya masih tergolong rendah. Didasarkan pada kondisi tersebut, sudu turbin tingkat pertama direkomendasikan untuk dilanjutkan pemakaiannya, tetapi setelah dilakukan pekerjaan rekondisi.  

Keywords

UDIMET 520; sudu turbin; gamma prime ('); karbida; UDIMET 520; turbine blade; gamma prime ('); carbide

References

R. Viswanathan, “Damage mechanisms and life assessment of high temperature components,” ASM International, Metals Park, Ohio, pp. 415-476, 1989.

ASM Handbook, “Failure analysis and prevention,” ASM International, Material Park, Ohio, vol. 11, pp. 263-273, 1998.

H. M. Liacy, S. Abouali, dan M. A. Garakani, “Failure analysis of a first stage gas turbine blade,” Engineering Failure Analysis, vol. 18, pp. 517-522, 2011. doi: 10.1016/j.engfailanal.2010.09.040.

S. Kargarnejed, dan F. Djavanroodi, “Failure assessment of nimonic 80A gas turbine blade,” Engineering Failure Analysis, vol. 26, pp. 211-219, 2012. doi: 10.1016/j.engfailanal.2012.05.028.

W. Mktouf, dan K. Sai, “An investigation of premature fatigue failures of gas turbine blades,” Engineering Failure Analysis, vol. 8, pp. 89-101, 2015. doi: https://doi.org/10.1016/j.engfailanal.2014.09.015.

S. Rani, “Common failures in gas turbine blade: A critical review,” IJESRT (International Journal of Engineering Sciences and Research Technology, vol. 7, no. 3, pp. 799-803, 2018. doi: 10.5281/zenodo.1207072.

V. Cuffaro, F. Cura, dan R. Sesana, “Advanced Life Assessment Methods for Gas Turbine Engine Components,” Procedia Engineering, vol. 74, pp. 129-134, 2014. doi: 10.1016/j.proeng.2014.06.236.

V. A. Bazhenov, A. I. Gulyar, S. O. Piskunov, dan A. A. Shkrye, “Gas Turbine Blade Service Life Assessment with Account of Fracture Stage,” Strength of Materials, vol. 40, no. 5, pp. 518-524, 2008. doi: 10.1007/s11223-008-9064-5.

M. Attarian, R. Khoshmanesh, S. Natesh dan P. Davami, “Microstructural evaluation and fracture mechanism of failed IN738LC gas turbine blade,” Case Studies in Engineering Failure Analysis, vol. 1, pp. 85-94, 2013. doi: 10.1016/j.csefa.2013.04.005.

ASM Handbook, “Metallography and microstructures,” ASM International, Materials Park, Ohio, vol. 9, pp. 279-296, 1995.

ASTM E-139, “Standard test methods for conducting creep, creep-rupture, and stress-rupture tests of metallic materials,” ASTM International, vol. 3, pp. 25-39, 2010.

Advanced Materials and Processes, “Guide to engineered materials,” ASM International, Metals Park, Ohio, pp. 90-100, 2002.

A. H. Mustafa, “Characterization of failed first-stage turbine blade cooling passage of gas turbine engine,” J. Fail. Anal. Preven, vol. 15, no. 2, pp. 258-265, 2015. doi: 10.1007/s11668-015-9921-z.

Copyright (c) 2018 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.