FABRIKASI NANOTUBES TiO2 DENGAN TINGKAT NANOKRISTALINITAS TINGGI MELALUI PERLAKUAN KOMBINASI ANIL DAN PASCA-HIDROTERMAL UNTUK APLIKASI SEL SURYA TERSENSITISASI ZAT PEWARNA[Fabrication of Highly Nanocrystalline TiO2 Nanotubes Through a Combination of Pre-Annealing and Hydrothermal Treatment for Dye Sensitized Solar Cell Application]

Alfian Ferdiansyah, Akhmad Herman Yuwono, Norifon Sofyan, Indriana Kartini, Togo Hadi Pujianto, Badrul Munir

Abstract

FABRIKASI NANOTUBES TiO2 DENGAN TINGKAT NANOKRISTALINITAS TINGGI MELALUI

PERLAKUAN KOMBINASI ANIL DAN PASCA-HIDROTERMAL UNTUK APLIKASI SEL SURYA
TERSENSITISASI ZAT PEWARNA. Dewasa ini struktur nanotubes telah mendapat perhatian yang sangat
besar karena memiliki rasio luas permukaan yang tinggi. Hal ini penting dalam aplikasinya sebagai elektroda sel
surya tersensitasi zat pewarna (dye sensitized solar cell, DSSC). Pada penelitian ini telah difabrikasi nanotubes
TiO2 melalui teknik hidrotermal standar dimana serbuk nano TiO2 P25 Degussa dilarutkan pada larutan alkalin
sodium hidroksida berkonsentrasi tinggi di dalam otoklaf tersegel. Untuk meningkatkan nanokristalinitas,
dilakukan sebuah modifikasi dimana proses anil konvensional dikombinasikan dengan pasca hidrotermal. Detail
struktur, morfologi dan kristalinitas diuji dengan XRD, spektroskopi Raman, SEM dan TEM, sedangkan sifat
optik dari nanotubes diinvestigasi dengan spektroskopi UV-Vis. Hasil investigasi menunjukkan bahwa dengan
memberikan kombinasi anil konvensional dan pasca hidrotermal pada nanotubes, nanokristalinitas dapat
ditingkatkan secara signifikan dan pada saat yang sama integritas struktur rongga (hollow) tetap terjaga. Untuk
sampel nanotubes yang sebelumnya diberikan anil 150 °C, ukuran kristalit anatase bertambah dari 6,93 sampai
7,82 nm setelah perlakuan pasca-hidrotermal 80-150 °C. Peningkatan nanokristalinitas lebih signifikan
ditunjukkan ketika temperatur anil dinaikkan sampai 300 °C kemudian dilanjutkan pasca-hidrotermal yang sama,
menghasilkan peningkatan ukuran kristalit mulai dari 17,20 sampai 18,30 nm. Energi celah pita yang dihasilkan
nanotubes berbanding terbalik dengan ukurun kristalit, dimana nilai terendah sebesar 3,19 eV didapatkan dari
ukuran kristalit terbesar yaitu 18,30 nm. Nanotubes ini juga memberikan sirkuit tegangan terbuka pada divais
DSSC hasil fabrikasi sebesar 108 mV.

Abstract

FABRICATION OF HIGHLY NANOCRYSTALLINE TiO2 NANOTUBES THROUGH A COMBINATION
OF PRE-ANNEALING AND HYDROTHERMAL TREATMENT FOR DYE SENSITIZED SOLAR CELL
APPLICATION. In the recent years TiO2 nanotube structure has attracted a great attention due to its very high
surface area to volume ratio. This property plays an important role on the dye sensitized solar cell electrodes
applications. In this study, TiO2 nanotubes have been fabricated through hydrothermal technique by dissolving
Degussa P25 TiO2 nanopowder in a highly concentrated alkaline solution of sodium hydroxide into a sealed
autoclave. In order to improve nanocrystallinty of TiO2 nanotubes structure, a modification was made by
combining conventional annealing process and hydrothermal post. Details of the structure, morphology and
crystallinity of products were analized by XRD, Raman spectroscopy, SEM and TEM, while the optical
properties of the nanotubes was examined by UV-Vis spectroscopy. The investigation result showed that
enhancing nanocrystallinity while at the same time maintaining the integrity of the nanotube hollow structure
can be obtained by the combined process of conventional annealing and post-hydrothermal treatment. For the
nanotube samples which have been previously annealed at 150 °C, the crystallite size of anatase TiO2 increased
from 6.93 to 7.82 nm after post-hydrothermal treatment of 80-150 °C. A more significant enhancement in the
142 | Majalah Metalurgi, V 27.2.2012, ISSN 0216-3188/ hal 141-150
nanocrystallinity can be achieved when the annealing temperature was raised to 300 ° C, followed by posthydrothermal.
This resulted in the crystallite size of anatase TiO2 nanotubes increased from 17.20 to 18.30 nm.
The band gap energy of resulting nanotubes is inversely proportional to crystallites size, where the lowest value
of 3.19 eV obtained from the largest crystallite size is 18.30. In the DSSC fabrication device, this nanotubes also
shown the highest open-circuit voltage of 108 mV.

Keywords

TiO2; Nanotubes; Pasca hidrotermal; Nanokristalinitas; DSSC;TiO2; Nanotubes; Hydrothermal post; Nanocrystallinity; DSSC (dye sensitized solar cell)

References

DAFTAR PUSTAKA

O'Regan, B. and M. Gratzel. 1991. ,,A

low-cost, high-efficiency solar cell

based on dye-sensitized colloidal

TiO2 films". Nature. : 353, 6346, 737-

Flores, I.C., et al. 2007. ,,Dyesensitized

solar cells based on TiO2

nanotubes and a solid-state

electrolyte". Journal of

Photochemistry and Photobiology A:

Chemistry. : 189, 2-3, 153-160.

Wongcharee, K. and V. Meeyoo.

,,Improvement of TiO2

properties for dye-sensitized solar cell

by hydrothermal and sol-gel

processes, in Technology and

Innovation for Sustainable

Development Conference". Khon

Kaen University, Thailand. : 485-488.

Hara, K., et al. 2000. ,,Highly

efficient photon-to-electron

conversion with mercurochromesensitized

nanoporous oxide

semiconductor solar cells". Solar

Energy Materials and Solar Cells. :

, 2, 115-134.

Ngamsinlapasathian, S., et al. 2005.

,,Single- and double-layered

mesoporous TiO2/P25 TiO2 electrode

for dye-sensitized solar cell". Solar

Energy Materials and Solar Cells. :

, 2, 269-282.

Adachi, M., et al. 2004. ,,Highly

Efficient Dye-Sensitized Solar Cells

with a Titania Thin-Film Electrode

Composed of a Network Structure of

Single-Crystal-like TiO2 Nanowires

Made by the “Oriented Attachment”

Mechanism". Journal of the American

Chemical Society. : 126, 45, 14943-

Nosheen, S., F.S. Galasso, and S.L.

Suib. 2009. ,,Role of Ti−O Bonds in

Phase Transitions of TiO2".

Langmuir. : 25, 13, 7623-7630.

Ando, T., H. Matsumura, and T.

Nakanishi. 2002. ,,Theory of ballistic

transport in carbon nanotubes".

Physica B: Condensed Matter. : 323,

-4, 44-50.

Law, M., et al. 2005. ,,Nanowire dyesensitized

solar cells". Nat Mater. : 4,

, 455-459.

Qiu, J., et al. 2007. ,,Fabrication and

characterization of TiO2 nanotube

arrays having nanopores in their walls

by double-template-assisted sol–gel

Nanotechnology". : 18, 29, 1-5.

Hoyer, P. 1996. ,,Formation of a

Titanium Dioxide Nanotube Array".

Langmuir. : 12, 6, 1411-1413.

Ou, H.-H. and S.-L. Lo. 2007.

,,Review of titania nanotubes

synthesized via the hydrothermal

treatment: Fabrication, modification,

and application". Separation and

Purification Technology. : 58, 1, 179-

Hoda, S.H., et al. 2009.

,,Hydrothermal Preparation of Gd3+-

Doped Titanate Nanotubes: Magnetic

Properties and Photovoltaic

Performance". International Journal

of Photoenergy. : 1-8.

Morgado Jr, E., et al. 2006. ,,A study

on the structure and thermal stability

of titanate nanotubes as a function of

sodium content". Solid State Sciences.

: 8, 8, 888-900.

Ngamsinlapasathian, S., et al. 2004.

,,Highly efficient dye-sensitized solar

cell using nanocrystalline titania

containing nanotube structure".

Journal of Photochemistry and

Photobiology A: Chemistry. : 164, 1-

, 145-151.

Cullity, B.D. Elements of X-ray

diffraction. 1956, Reading, Mass.:

Addison-Wesley Pub. Co.

A.B, M. 2007. ,,Band-gap

determination from diffuse reflectance

measurements of semiconductor films,

and application to

Fabrikasi Nanotubes TiO2 …../ Alfian Ferdiansyah| 149

photoelectrochemical water-splitting".

Solar Energy Materials and Solar

Cells.: 91, 14, 1326-1337.

Kim, G.-S., et al. 2006.

,,Hydrothermal synthesis of titanate

nanotubes followed by

electrodeposition process". Korean

Journal of Chemical Engineering. :

, 6, 1037-1045.

Gao, T., H. Fjellvåg, and P. Norby.

,,Crystal Structures of Titanate

Nanotubes: A Raman Scattering

Study". Inorganic Chemistry. : 48, 4,

-1432.

Pellegrini, G., G. Mattei, and P.

Mazzoldi. 2005.,, Finite depth square

well model: Applicability and

limitations". Journal of Applied

Physics. : 97, 7, 073706-8.

Li, M. and J.C. Li. 2006. ,,Size

effects on the band-gap of

semiconductor compounds".

Materials Letters. : 60, 20, 2526-

Copyright (c) 2016 Metalurgi

Refbacks

  • There are currently no refbacks.