Karakterisasi Struktur Coating Fe-25Al Yang Difabrikasi Dengan Metode Paduan Mekanik [Structure Characterization of Fe-25Al Coating Fabricated by Mechanical Alloying Method]

Khoirun Nisa, Didik Aryanto, Toto Sudiro, Perdamean Sebayang, Mahardika P Aji

Abstract

Fe-25Al coating has been prepared on low carbon steel substrate by using a mechanical alloying technique. Structure of Fe-25Al coating before and after heat treatment at 600, 700, and 800 °C was studied by using XRD (x-ray diffraction) characterization. SEM (scanning electron microscopy) and EDX (energy disperse xray) were used to identified the morphology of cross-section of Fe-25Al coating after mechanical alloying process. The result of SEM, EDX and XRD showed that the Fe-25Al deposited uniformly on low carbon steel. The Fe-25Al coating formation has a solid solution Fe(Al) phase. Heat treatment caused the changing in the phase of Fe-25Al coating, where the Fe3Al phase with orientation of (110), (200) and (211) plane was formed. The optimum of diffusion process was occurs at temperature of 600C which was indicated by the increasing in the crystalline size and followed by the decreasing in the dislocation density and lattice strain. Increasing temperature on the heat treatment caused the changing in the structure parameter, such as lattice parameter, crystalline size, lattice strain and dislocation density. In this work, heat treatment on the Fe-25Al coating influenced the changing in crystal defect such as grain boundaries, vacancy and dislocation. It affected the
changes of lattice strain and crystalline size of Fe-25Al coating.

Abstrak

Coating Fe-25Al telah dipreparasi di atas substrat baja karbon rendah dengan menggunakan metode paduan mekanik. Struktur dari coating Fe-25Al sebelum dan setelah diberi perlakuan panas pada 600°C, 700°C, and 800°C dipelajari dengan menggunakan karakterisasi X-ray diffraction (XRD). Scanning electron microscopy (SEM) dan energy disperse X-ray (EDX) digunakan untuk mengetahui morfologi dari penampang lintang coating Fe-25Al setelah proses paduan mekanik. Hasil dari SEM, EDX dan XRD menunjukkan bahwa Fe-25Al telah terdeposisi seragam pada substrat baja karbon rendah. Coating Fe-25Al yang terbentuk memiliki fasa solid solution Fe(Al). Perlakuan panas menyebabkan perubahan fasa pada coating Fe-25Al, dimana terbentuk fasa Fe3Al dengan orientasi bidang (110), (200) dan (211). Proses difusi optimum terjadi pada suhu 600°C yang ditunjukkan dengan peningkatan ukuran butir, diikuti dengan berkurangnya densitas dislokasi dan regangan kisi. Meningkatnya suhu pada perlakuan panas menyebabkan perubahan parameter struktur seperti parameter kisi, ukuran kristal, regangan kisi dan kerapatan dislokasi. Dalam pekerjaan ini, perlakuan panas pada coating Fe-25Al mempengaruhi perubahan cacat kristal seperti batas butir, kekosongan dan dislokasi. Hal tersebut berakibat pada perubahan regangan kisi dan ukuran kristal dari coating Fe-25Al.

Keywords

Coating Fe-25Al; SEM; XRD; Ukuran kristal; Dislokasi; Crystalline size; Dislocation

References

A. Canakci, F. Erdemir, T. Varol, and S. Ozkaya, “Formation of Fe-Al intermetallic coating on low carbon steel by a novel mechanical alloying technique,” Powder Technology, vol. 247, pp. 24-29, Oct. 2013.

T. Sudiro, P. Sebayang, D. Aryanto, A. I. J. Hia, and K. Sebayang, “Structure and hardness characteristics of 50Cr-50Al coating prepared by a mechanical alloying technique: effects of heat treatment temperature,” Teknologi Indonesia, vol. 38, pp. 156-162, 2015

N. Rosita, T. Sudiro, D. Aryanto dan M. P. Aji, “Studi x-ray diffractometry pada struktur coating alumunium yang dipreparasi dengan metode mechanical alloying,” Jurnal Sains Materi Indonesia, Vol. 17, hal. 15-21, Okt. 2015.

F. Ahnia, and B. Demri, “Evaluation of aluminium coatings in simulated marine environment,” Surface and Coatings Technology, vol. 220, pp. 232-236, Apr. 2013.

N. Cinca, S. Dosta, and J. M. Guilemany, “Nanoscale characterization of FeAl-HVOF coatings,” Surface and Coatings Technology, vol. 205, pp. 967-973, Nov. 2010.

A. Senderowski, Z. Bojar, W. Wo1czyński, A. Paw1owski, “Microstructure characterization of D-gun sprayed Fe–Al intermetallic coatings,” Intermetallics, vol. 18, pp. 1405-1409, Jul. 2010.

G.-J. Yang, H.-T. Wang, C.-J. Li, C.-X. Li, “Effect of annealing on the microstructure and erosion performance of cold-sprayed FeAl intermetallic coatings,” Surface and Coatings Technology, vol. 205, pp. 5502-5509, Sept. 2011.

N. Takata, M. Nishimoto, S. Kobayashi, and M. Takeyama, “Morphology and formation of Fe-Al intermetallic layers on iron hot-dipped in Al-Mg-Si alloy melt,” Intermetallics, vol. 54, pp. 136-142, Nov. 2014.

A. Song, S. Dong, H. Liao, and C. Coddet, “Microstructure and wear resistance of FeAl/Al2O3intermetallic composite coating prepared by atmospheric plasma spraying,” Surface and Coatings Technology, vol. 268, pp. 24-29, Apr. 2015.

P. Novák, M. Zelinková, J. Šerák, A. Michalcová, M. Novák, and D. Vojtěch, “Oxidation resistance of SHS Fe–Al–Si alloys at 800 °C in air,” Intermetallics, vol. 19, pp. 1306-1312, September 2011.

H.-Q. Yang, Z.-J. Yao, X.-X. Luo, Z.-L. Zhang, and Y. Chen, “Effect of Nb addition on structure and mechanical properties of FeAl coating,” Surface and Coatings Technology, vol. 270, pp. 221-226, May 2015.

F. Průša, D. Vojtěch, M. Bláhová, A. Michalcová, T. F. Kubatík, and J. Čížek, “Structure and mechanical properties of Al–Si–Fe alloys prepared by short-term mechanical alloying and spark plasma sintering,” Materials and Design, vol. 75, pp. 65-75, Jun. 2015.

X. Cheng, Y. Ouyang, H. Shi, X. Zhong, Y. Du, and X. Tao, “Nano-amorphous (FeAl)1−xZrx alloys prepared by mechanical alloying,” Journal of Alloys and Compounds, vol. 421, pp. 314-318, Sept. 2006.

M. Krasnowski, and T. Kulik, “Nanocrystalline FeAl intermetallic produced by mechanical alloying followed by hot-pressing consolidation,” Intermetallics, vol. 15, pp. 201-205, Feb. 2007.

M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol, and M. Dammak, “Microstructure evolution and mechanical properties of nanocrystalline FeAl obtained by mechanical alloying and cold consolidation,” Journal of Alloys and Compounds, vol. 509, 3293-3298, Feb. 2011.

P. Novák, T. Kubatík, J. Vystrcil, R. Hendrych, J. Kríz, J. Mlynár, and D. Vojtech, “Powder metallurgy preparation of Al-Cu-Fe quasi crystals using mechanical alloying and Spark Plasma Sintering,” Intermetallics, vol. 52, pp. 131-137, Sept. 2014.

M. Mohammadnezhad, M. Shamanian, and M. H. Enayati, “Formation of nanostructured NiAl coating on carbon steel by using mechanical alloying,” Applied Surface Science, vol. 263, pp. 730-736, Dec. 2012.

Y. Li, C. Chen, R. Deng, X. Feng, and Y. Shen, “Microstructure evolution of Cr coatings on Cu substrates prepared by mechanical alloying method,” Powder Technology, vol. 268, pp. 165-172, Dec. 2014.

A. Chen, J. Zhang, C. Duan, X. Feng, and Y. Shen, “Investigation of Cr-Al composite coatings fabricated on pure Ti substrate via mechanical alloying method: effects of Cr-Al ratio and milling time on coating, and oxidation behavior of coating,” Journal of Alloys and Compounds, vol. 660, pp. 208-219, Marc. 2016.

S. K. Pabi, D. Das, T. K. Mahapatra, and I. Manna, “Mathematical modelling of the mechanical alloying kinetics,” Acta Materialia, vol. 46, pp. 3501-3510, Jun. 1998.

Sh. E. Haghighi, K. Janghorban, and S. Izadi, “Structural evolution of Fe-50at.%Al powders during mechanical alloying and subsequent annealing processes,” Journal of Alloys and Compounds, vol. 495, pp. 260-264, Apr. 2010.

M. Rodriguez, F. Plazaola, J. S. Garitaonandia, J. A. Jimenez, and E. Apiñaniz, “Influence of volume and Fe local environment on magnetic properties on Fe rich FeAl alloys,” Intermetallics, vol. 24, pp. 38-49, May 2012.

M. Krifa, M. Mhadhbi, L. Escoda, J. Saurina, J.J. Suñol, N. Llorca-Isern, C. Artieda-Guzmán, and M. Khitouni, “Phase transformations during mechanical alloying of Fe–30% Al–20% Cu,” Powder Technology, vol. 246, pp. 117-124, Sept. 2013.

Q. Zhao, Z. Shao, C. Liu, M. Jiang, X. Li, R. Zevenhoven, and H. Saxén, “Preparation of Cu–Cr alloy powder by mechanical alloying,” Journal of Alloys and Compounds, vol. 607, pp. 118-124, Sept. 2014.

M. Mohammadnezhad, M. Shamanian, M. H. Enayati, and M. Salehi, “Influence of annealing temperature on the structure and properties of the nanograined NiAl intermetallic coatings produced by using mechanical alloying,” Surface and Coatings Technology, vol. 217, pp. 64-69, Feb. 2013.

M. Slimi, M. Azabou, L. Escoda, J.J. Suñol, and M. Khitouni, “Structural and microstructural properties of nanocrystalline Cu–Fe–Ni powders produced by mechanical alloying,” Powder Technology, vol. 266, pp. 262-267, Nov. 2014.

S. Mula, D. Setman, K. Youssef, R.O. Scattergood, and C. C Koch, “Structural evolution of Cu(1-X)YX alloys prepared by mechanical alloying: Their thermal stability and mechanical properties,” Journal of Alloys and Compounds, vol. 627, pp. 108-116, Apr. 2015.

M. Mhadhbi, J. J. Suñol, and M. Khitouni, “Influence of heat treatments on the structure of FeAl powders mixture obtained by mechanical alloying,” Physics Procedia, vol. 40, pp. 38-44, 2013.

Copyright (c) 2016 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.