Perubahan Fasa Dalam Pembuatan Serbuk LiFePO4 Dengan Tiga Tahap Perlakuan Panas Tanpa Pelapisan Karbon [Phase Change In LiFePO4 Powder Making With Three Step Heat Treatment Non-Carbon Coating]

R. Ibrahim Purawiardi, Christin Rina Ratri, Endang Suwandi

Abstract

LiFePO4 is one of the cathode active materials for lithium-ion batteries. This study aimed to synthesize LiFePO4 active material powder without carbon coating using three-step heat treatment i.e. first calcination with 700 °C temperature for about 2 h, second calcination with 800 °C temperature for about 8 h, and sintering using activated carbon pellets with 800 °C for about 4 h. The raw materials are LiOH.H2O, Fe2O3, and H3PO4. The first calcination produced precursor which consists of Li3PO4 and Fe2O3, with Fe2O3 as a dominant phase. The second calcination produced precursor which consists of Li3Fe2(PO4)3 and Fe2O3, with Li3Fe2(PO4)3 as a dominant phase. The sintering process produced LiFePO4 as a final powder product.  There is Li3PO4 – Li3Fe2(PO4)3 – LiFePO4 phase transformation during three-step heat treatment. The final product i.e. LiFePO4 has a Pnma space group. It is indicated that LiFePO4 has an olivine structure. The olivine structure is a structure that uses for lithium-ion cathode material. Activated carbon pellets did not react during final sintering process, so that it did not make a carbon coating on LiFePO4 morphology. According to the results, we can conclude that this method can be used for synthesizing lab-scale LiFePO4without carbon coating.

.

 

Abstrak

LiFePO4 merupakan material yang digunakan sebagai bahan aktif katoda pada aplikasi baterai lithium-ion. Studi awal ini dilakukan untuk mensintesis serbuk bahan aktif LiFePO4 tanpa pelapisan karbon dengan metode tiga tahap perlakuan panas yaitu kalsinasi pertama dengan temperatur 700 oC selama 2 jam, kalsinasi kedua dengan temperatur 800 oC selama 8 jam, dan sinter menggunakan penstabil fasa tablet karbon aktif dengan temperatur 800 oC selama 4 jam. Bahan-bahan baku yang digunakan dalam sintesis ini adalah LiOH.H2O, Fe2O3, dan H3PO4. Kalsinasi pertama menghasilkan prekursor yang memiliki komposisi Fe2O3 dan Li3PO4 dengan fasa Fe2O3 yang lebih dominan. Kalsinasi kedua menghasilkan prekursor yang memiliki komposisi Li3Fe2(PO4)3 dan Fe2O3 dengan fasa Li3Fe2(PO4)3 yang lebih dominan. Sementara proses sinter menghasilkan serbuk material aktif LiFePO4. Dengan demikian terjadi transformasi fasa dalam tiga tahap perlakuan panas yaitu dari Li3PO4 menjadi Li3Fe2(PO4)3 kemudian menjadi LiFePO4. Fasa akhir LiFePO4 memiliki grup ruang Pnma yang berarti berstruktur olivine. Struktur olivine ini yang digunakan sebagai bahan aktif katoda baterai lithium-ion. Tablet karbon aktif tetap utuh setelah sintesis, sehingga tidak bereaksi dan membentuk pelapisan karbon pada serbuk LiFePO4. Dengan demikian, metode ini dapat digunakan untuk mensintesis LiFePO4 tanpa pelapisan karbon dalam lingkup skala laboratorium.

Keywords

LiFePO4; sintesis; tanpa pelapisan karbon; tiga tahap perlakuan panas; skala laboratorium; LiFePO4; Synthesis; Non-carbon coating; Three-step heat treatment; Lab-scale

References

A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough. “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries”. J. Electrochem. Soc., vol. 144 (4), pp. 1188-1194, Apr. 1997.

J. Wang and X. Sun. “Understanding and Recent Development of Carbon Coating on LiFePO4 Cathode Materials for Lithium-ion Batteries”. Energy and Environmental Science, Nov. 2011.

V. Palomares and T. Rojo. “Synthesis Processes for Li-ion Battery Electrodes – From Solid State Reaction to Solvothermal Self-Assembly Methods”. Lithium Ion Batteries – New Developments, Feb. 2012.

Y. H. Nien, J. R. Carey and J. S. Chen. “Physical and Electrochemical Properties of LiFePO4/C Composite Cathode Prepared from Various Polymer-Containing Precursors”. Journal of Power Sources, vol. 193, pp. 822-827, Apr. 2009.

J. Liu, Z. Wang, G. Zhang, Y. Liu and A. Yu. “Size-Controlled Synthesis of LiFePO4/C Composites as Cathode Materials for Lithium Ion Batteries”. International Journal of Electrochemical Science, vol. 8, pp. 2378-2387, Feb. 2013.

J. S. Lim, S. W. Kang, J. Moon, S. J. Kim, H. S. Park, J. P. Baboo and J. K. Kim. “Low-Temperature Synthesis of LiFePO4 Nanocrystals by Solvothermal Route”. Nanoscale Research Letters, vol. 7 (3), pp. 1-7, Jan. 2012.

M. Mazman, O. Cuhadar, D. Uzun, E. Avci, E. Bicer, T. C. Kaypmaz and U. Kadiroglu. “Optimization of LiFePO4 Synthesis by Hydrothermal Method”. Turkish Journal of Chemistry, vol. 38, pp. 297-308, Mar. 2014.

S. C. Jheng and J. S. Chen. “The Synthesis of LiFePO4/C Composite by the Precipitation Between Two Water/Oil Emulsions”. International Journal of Electrochemical Science, vol. 8, pp. 4901-4913, Apr. 2013.

C. Ajpi, G. Diaz, H. Visbal and K. Hirao. “Synthesis and Characterization of Cu-doped LiFePO4 with/without Carbon Coating for Cathode of Lithium-ion Batteries”. Journal of Ceramic Society of Japan, vol. 121 (5), pp. 441-443, Mar. 2013

B. Wu, Y. Ren and N. Li. “LiFePO4 Cathode Material”. Electric Vehicles – The Benefits and Barriers, Sep. 2011.

J. Yu, J. Hu and J. Li. “One-spot Synthesis and Electrochemical Reactivity of Carbon Coated LiFePO4 Spindless”. Applied Surface Science, vol. 263, pp. 277-283, 2012.

H. M. Rietveld. “A Profile Refinement Method for Nuclear and Magnetic Structure”. Journal of Applied Crystallography, vol. 2, pp. 65-71, Nov. 1968.

Copyright (c) 2016 METALURGI
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.