Pengaruh Anneal Hardening Dan % Reduksi Warm Rolling Terhadap Sifat Mekanik Paduan Cu-Zn 70/30 [Influence of Anneal Hardening And Warm Rolling % Reduction To Mechanical Properties of Cu-Zn 70/30]
Abstract
Copper alloy has many uses in industry. However, in its application requires high mechanical properties. Therefore, copper alloys has been hardened conventionally by solution and/or precipitation hardening and dispersion hardening then is experienced with anneal hardening mechanism through an annealing process at 150-300 °C. In this research, Cu-Zn 70/30 alloys was subjected to warm rolling with 50% and 60% in reduction percentage followed by annealing. Several examinations was done after warm rolling such as microhardness testing, tensile testing, metallography, and FESEM (field emission scanning electron microscope). The results show that anneal hardening was occured at 300 °C followed by increasing of hardness value, tensile strength, and decreasing of elongation. Anneal hardening mechanism in Cu-Zn 70/30 was obtained by increasing % reduction during warm rolling and anneal process. This is caused by Zn element which is segregated into dislocation and observed with FESEM analysis as deformation band. With increasing of % reduction to Cu-Zn 70/30 alloy will also results denser and thicker deformation bands.
Abstrak
Paduan tembaga memiliki banyak kegunaan dalam bidang industri. Namun, dalam aplikasinya membutuhkan sifat mekanis yang tinggi. Oleh karena paduan tembaga sulit dilakukan pengerasan secara konvensional seperti alloying, precipitation hardening, dan dispersion hardening maka yang dilakukan adalah dengan mekanisme anneal hardening melalui proses anil pada suhu 150-300 °C. Pada penelitian ini, paduan Cu-Zn 70/30 dilakukan warm rolling pada suhu 300 °C dengan presentase reduksi 50% dan 60%. Karakterisasi yang dilakukan setelah proses di atas adalah uji kekerasan secara mikro, uji tarik, pengamatan metalografi, dan analisa dengan FESEM (field emission scanning electron microscope). Hasil pemeriksaan menunjukkan bahwa efek anneal hardening muncul pada suhu 300 °C yang diikuti dengan peningkatan nilai kekerasan dan kekuatan tarik, namun persen elongasinya menurun. Dengan semakin besarnya % reduksi warm rolling diikuti dengan proses anneal yang dilakukan terhadap paduan Cu-Zn 70/30 mengakibatkan terjadinya anneal hardening. Hal ini disebabkan karena adanya unsur Zn yang tersegregasi dalam dislokasi dan teramati dengan FESEM sebagai pita-pita deformasi (deformation band). Dengan meningkatnya % reduksi yang diberikan pada paduan juga akan menghasilkan pita-pita deformasi yang semakin rapat dan tebal.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Nestrovic, S., “Influence of deformation degree at cold rolling on the anneal hardening effect in sintered copper based alloys,” Journal of Mining and Metallurgy 40B., vol.1, hal.101-109, 2004.
William D.Callister Jr., “An introduction : material science and engineering,” John Wiley & Son, Inc., pp. 373, 2007.
Nestrovic, S., dkk, “Anneal hardening effect in sintered copper based alloy,” Journal Science of Sintering., vol.34, pp.169-174, 2002.
Nestrovic, S., “Influence of time annealing on anneal hardening effect of a cast Cu-Zn alloy,” Journal of Mining and Metallurgy 39., vol.3-4B, pp. 489-497, 2003.
Zhao, J.Z, dkk., “Formation of the cottrel atmosphere during strain aging of bake hardenable steels,” Metal. And Mater. Trans. A., vol. 32A, pp. 417-423, 2001.
Febriyanti, Eka, Dedi Priadi, Rini Riastuti, “Pengaruh peningkatan derajat deformasi hot rolling terhadap morfologi struktur paduan Cu-Zn 70/30,” Prosiding SENAMM VIII., pp.10-16 : Yogyakarta, 2015.
Febriyanti, Eka, Dedi Priadi, Rini Riastuti, “Pengaruh thermo mechanical controlled process (TMCP) terhadap penghalusan butir dan sifat mekanik paduan Cu-Zn 70/30,” Majalah Metalurgi., vol.30, No.3, pp.141-148, 2015.
ASTM E8, “Standard test methods for tension testing of metallic materials,” 2003.
ASTM E3, “Standard guide for preparation for metallographic specimens,” 2003.
ASTM E92,”Standard test methods for vickers hardness of metallic materials,” 2003.
Nestorovic, S., D. Markovic, L. Ivanic. “Influence of degree of deformation in rolling on anneal hardening effect of a cast copper alloy,” Bulletin Material Science, vol. 26, No. 6, pp.601-604, Oktober 2003.
Krishna Chenna, S., dkk, “On the prediction of strength from hardness for copper alloys,” Journal of Materials, article ID 352578, Hindawi Publishing Corporation, pp.1-6, 2013.
Somayeh, Pasebani, T.M.Reza, “Nano-grained 70/30 brass strip produced by accumulative roll-bonding (ARB) process”, Materials Science and Engineering A., vol.527, No.3, pp.491-497, 2010.
Wang, Y.B., X.Z.Liao, Y.H.Zhao, E.J Lavernia, dkk, “The role of stacking faults and twin boundaries in grain refinement of a Cu-Zn alloy processed by high-pressure torsion,” Materials Science and Engineering A., vol.527, pp.4959-4966, 2010.
Balogh, Levente, Tama’s Unga’r, Y.Zhao, Y.T. Zhu, dkk, “Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper-Zinc alloys,” Acta Materialia., vol.56, pp.809-820, 2008.
Valiev, R.Z., R.K. Islagaliev, I.V.Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Progress in Materials Science, vol.45, pp.103-189, 2000.
Humpreys, F.J., M.Hatherly, “Recrystallization and related annealing phenomena”, Elsevier, vol. 2nd edition, 2004.
Sakai, T., A.Belyakov, R.Kaibyshev, H.Miura, John J.Jonas, “Dynamic and post-dynamic recrystallization under hot, cold, and severe plastic deformation conditions,” Progress in Materials Science, vol.60, pp.130-207, 2014.
Ballokova, B., T.Kvackaj, P.Hvizdos, M.Besterci, “Fracture analysis and local mechanical properties of copper processed by ECAR,” Acta Metallurgica-Slovaca Converence, vol.3, pp. 259-263, 2013.
Higuera-Cobos, O.F.,J.M.Cabrera, “Mechanical, microstructural, and electrical evolution of commercially pure copper processed by ECAP,” Materials Science and Engineering A, vol.571, pp.103-114, 2013.
Svetlana Nestorovic, Desimir Markovic, Ljubica Ivanic, “Influence of degree of deformation in rolling on anneal hardening effect of a cast copper alloy,” Bulletin Material Science © Indian Academy of Sciences, vol. 26, No. 6, pp. 601–604, 2003.
C. Zheng, N. Xiao, “Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling,” Computational Materials Science, vol. 44, pp. 507-514, 2008.
Verlinden, Berth, Julian Driver, Indradev Samadjar & Roger D.Doherty, “Thermo-mechanical processed of metallic materials,” Elsevier, Ltd, 2006.
Charlie R.Brooks, “Heat Treatment, structure and properties of non-ferrous alloys,” ASM International, 2006.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.