Optimization of NMC811 Synthesis via Oxalate Coprecipitation Method for Lithium-Ion Battery Cathode

Fiona Angellinnov, Achmad Subhan, Bambang Priyono, Anne Zulfia Syahrial

Abstract

NMC811 was synthesized through the oxalate coprecipitation method, followed by the solid-state method of lithiation. Stirring speed (500, 750, 1000 rpm), aging time (0, 3, 5h), sintering atmosphere (with and without oxygen flow), sintering temperature (700, 750, 800 °C), and lithium concentration (0, 2, 5% excess) effect on the NMC811 were examined. Characterization results showed that the optimum stirring speed and aging time are 750 rpm and 3 hours. Based on structural analysis, the best condition for sintering is in oxygen atmospheres at 800 °C with a lithium concentration of 2% excess. NMC811, synthesized with these optimum parameters, provided a 212.93 mAh/g capacity. These findings deliver insight into NMC811 synthesis optimization.

Keywords

Cathode material; oxalate coprecipitation; NMC811; synthesis method

Full Text:

PDF

References

R. Sharma, H. Kumar, G. Kumar, S. Sharma, R. Aneja, A. K. Sharma, R. Kumar, and P. Kumar, “Progress and challenges in electrochemical energy storage devices: Fabrication, electrode material, and economic aspects,” Chemical Engineering Journal, vol. 468, p. 143706, 2023. DOI: 10.1016/j.cej.2023.143706.

J. Yang, X. Liang, H. Ryu, C. S. Yoon, and Y. Sun, “Ni-rich layered cathodes for lithium-ion batteries : From challenges to the future,” Energy Storage Mater, vol. 63, p. 102969, 2023. DOI: 10.1016/j.ensm.2023.102969.

B. Xiao and X. Sun, “Surface and subsurface reactions of Lithium transition metal oxide cathode materials: An overview of the fundamental origins and remedying approaches,” Adv Energy Mater, vol. 8, no. 29, pp. 1-27, 2018. DOI: 10.1002/aenm.201802057.

J. V. Laveda, J. E. Low, F. Pagani, E. Stilp, S. Dilger, V. Baran, M. Heere, and C. Battaglia, “Stabilizing capacity retention in NMC811/graphite full cells via TMSPi Electrolyte Additives,” ACS Appl Energy Mater, vol. 2, no. 10, pp. 7036-7044, 2019. DOI: 10.1021/acsaem.9b00727.

P. Yan, J. Zheng, L. Dongping, Y. Wei, J. Zheng, Z. Wang, S. Kuppan, J. Yu, L. Luo, D. Edwards, M. Olszta, K. Amine, J. Liu, J. Xiao, F. Pan, G. Chen, J. G. Zhang, and C. M. Wang, “Atomic-resolution visualization of distinctive chemical mixing behavior of Ni, Co, and Mn with Li in layered Lithium transition-metal oxide cathode materials,” Chemistry of Materials, vol. 27, no. 15, pp. 5393-5401, 2015. DOI: 10.1021/acs.chemmater.5b02016.

S. T. Myung, F. Maglia, K. J. Park, C. S. Yoon, P. Lamp, S. J. Kim, and Y. K. Sun, “Nickel-rich layered cathode materials for automotive Lithium-ion batteries: Achievements and perspectives,” ACS Energy Letters, vol. 2, no. 1, pp. 196-223, 2017. DOI: 10.1021/acsenergylett.6b00594.

S. E. Renfrew and B. D. McCloskey, “Residual Lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of Li-stoichiometric and Li-rich layered transition-metal oxides,” J Am Chem Soc, vol. 139, no. 49, pp. 17853-17860, 2017. DOI: 10.1021/jacs.7b08461.

Y. Bi, T. Wang, M. Liu, R. Du, W. Yang, Z. Liu, Z. Peng, Y. Liu, D. Wang, and X. Sun, “Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance,” RSC Adv, vol. 6, no. 23, pp. 19233-19237, 2016. DOI: 10.1039/c6ra00648e.

A. Manthiram, J. C. Knight, S. T. Myung, S. M. Oh, and Y. K. Sun, “Nickel-rich and Lithium-rich layered oxide cathodes: Progress and perspectives,” Adv Energy Mater, vol. 6, no. 1, 2016. DOI: 10.1002/aenm.201501010.

H. Zhang, H. Zhao, M. A. Khan, W. Zou, J. Xu, L. Zhang, and J. Zhang, “Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries,” J Mater Chem A Mater, vol. 6, p. 20564, 2018. DOI: 10.1039/c8ta05336g.

L. J. Li, X. H. Li, Z. X. Wang, H. J. Guo, P. Yue, W. Chen, and L. Wu, “A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery,” Powder Technol, vol. 206, pp. 353-357, 2011. DOI: 10.1016/j.powtec.2010.09.010.

B. Lin, Z. Wen, Z. Gu, and S. Huang, “Morphology and electrochemical performance of Li[Ni1/3Co1/3Mn1/3O2] cathode material by a slurry spray drying method,” J Power Sources, vol. 175, no. 1, pp. 564-569, 2008. DOI: 10.1016/j.jpowsour.2007.09.055.

J. Xu, S. L. Chou, Q. F. Gu, H. K. Liu, and S. X. Dou, “The effect of different binders on electrochemical properties of LiNi 1/3Mn1/3Co1/3O2 cathode material in Lithium ion batteries,” J Power Sources, vol. 225, pp. 172-178, 2013. DOI: 10.1016/j.jpowsour.2012.10.033.

Q. Jing, J. Zhang, C. Yang, Y. Chen, and C. Wang, “A novel and practical hydrothermal method for synthesizing LiNi1/3Co1/3Mn1/3O2 cathode material,” Ceram Int, vol. 46, no. 12, pp. 20020-20026, 2020. DOI: 10.1016/j.ceramint.2020.05.073.

L. Tang, X. Cheng, R. Wu, T. Cao, J. Lu, Y. Zhang, and Z. Zhang, “Monitoring the morphology evolution of LiNi0.8Mn0.1Co0.1O2 during high-temperature solid state synthesis via in situ SEM,” Journal of Energy Chemistry, vol. 66, pp. 9-15, 2022. DOI: 10.1016/j.jechem.2021.07.021.

F. Angellinnov, A. Subhan, A. J. Drew, and A. Z. Syahrial, “Synthesis of Sn doped and rice husk derived activated carbon surface coating NMC 811 through solution combustion method,” Heliyon, vol. 10, no. 1, p. e23199, 2024. DOI: 10.1016/j.heliyon.2023.e23199.

A. L. Lipson, B. J. Ross, J. L. Durham, D. Liu, M. Leresche, T. T. Fister, L. Liu, and K. Kim, “Stabilizing NMC 811 Li-ion battery cathode through a rapid coprecipitation process,” Applied Energy Materials, vol. 4, pp. 1972-1977, 2021. DOI: 10.1021/acsaem.0c03112.

X. Zhao, J. Wang, X. Dong, G. Liu, W. Yu, and L. Wang, “Structure design and performance of LiNixCoyMn1-x-yO2 cathode materials for lithium-ion batteries: A review,” Journal of the Chinese Chemical Society, vol. 61, no. 10, pp. 1071-1083, 2014. DOI: 10.1002/jccs.201400107.

H. Li, Q. Xu, X. X. Shi, D. W. Song, and L. Q. Zhang, “Electrochemical performance of LiNi0.5Mn0.5O2 with different synthesis methods,” Rare Metals, vol. 34, no. 8, pp. 580-585, 2015. DOI: 10.1007/s12598-013-0088-z.

M. Malik, K. H. Chan, and G. Azimi, “Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries,” Mater Today Energy, vol. 28, p. 101066, 2022. DOI: 10.1016/j.mtener.2022.101066.

C. Y. Wu, Q. Bao, Y. T. Tsai, and J. G. Duh, “Tuning (003) interplanar space by boric acid co-sintering to enhance Li+ storage and transfer in Li(Ni0.8Co0.1Mn0.1)O2 cathode,” J Alloys Compd, vol. 865, p. 158806, 2021. DOI: 10.1016/j.jallcom.2021.158806.

H. Tian, N. Ye, D. Liu, and W. Li, “Effects of synthesis conditions on the structural and electrochemical properties of layered LiNi1/3Co1/3Mn1/3O2 cathode material via oxalate co-precipitation method,” Rare Metals, vol. 27, no. 6, pp. 575-579, 2008. DOI: 10.1016/S1001-0521(08)60185-0.

C. F. Zhang, P. Yang, X. Dai, X. Xiong, J. Zhan, and Y. L. Zhang, “Synthesis of LiNi1/3Co1/3Mn1/3O2 cathode material via oxalate precursor,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 19, no. 3, pp. 635-641, 2009. DOI: 10.1016/S1003-6326(08)60325-8.

A. Jihad, A. A. N. Pratama, C. S. Yudha, M. Rahmawati, H. Widiyandari, and A. Purwanto, “Effect of Zn, Cu, and Mg doping on the structural characteristic of LiNi0.6Mn0.2Co0.2O2 (NMC622),” in ACM International Conference Proceeding Series Association for Computing Machinery, 2020. DOI: 10.1145/3429789.3429857.

A. S. Wijareni, H. Widiyandari, A. Purwanto, A. F. Arif, and M. Z. Mubarok, “Morphology and particle size of a synthesized NMC 811 cathode precursor with mixed hydroxide precipitate and Nickel sulfate as Nickel sources and comparison of their electrochemical performances in an NMC 811 Lithium-ion battery,” Energies (Basel), vol. 15, no. 16, p. 5794, 2022. Doi: 10.3390/en15165794.

H. S. E. A. Gustiana, F. R. Agustiana, S. S. Nisa, and E. R. Dyartanti, “Synthesis and characterization of NMC 811 by oxalate and hydroxide coprecipitation method,” Evergreen, vol. 9, no. 2, pp. 438–442, 2022. Doi: 10.5109/4794169.

D. Wang, I. Belharouak, G. Zhou, and K. Amine, “Synthesis of Lithium and Manganese-rich cathode materials via an oxalate co-precipitation method,” J Electrochem Soc, vol. 160, no. 5, pp. A3108-A3112, 2013. Doi: 10.1149/2.016305jes.

H. Widiyandari, R. Ardiansah, and A. S. Wijareni, “Synthesis of lithium nickel manganese cobalt as cathode material for Li-ion battery using different precipitant agents by coprecipitation method,” AIP Conf Proc of the 2020 International Conference on Engineering and Information Technology for Sustainable Industry, vol. 2217, pp. 030023-1-030023-8, 2020. DOI:10.1145/3429789.3429857.

S. S. Nisa, M. Rahmawati, C. S. Yudha, H. Nilasary, H. Nursukatmo, H. S. Oktaviano, S. U. Muzayanha, and A. Purwanto, “Fast approach to obtain layered transition-metal cathode material for rechargeable batteries,” Batteries, vol. 8, no. 1, 2022. DOI: 10.3390/batteries8010004.

I. Jung, J. Choi, and Y. Tak, “Nickel oxalate nanostructures for supercapacitors,” J Mater Chem, vol. 20, no. 29, pp. 6164-6169, 2010. DOI: 10.1039/c0jm00279h.

A. Habibi, M. Jalaly, R. Rahmanifard, and M. Ghorbanzadeh, “Solution combustion synthesis of the nanocrystalline NCM oxide for lithium-ion battery uses,” Mater Res Express, vol. 5, no. 2, 2018. DOI: 10.1088/2053-1591/aaab12.

M. Satyanarayana, A. K. Jibin, E. Umeshbabu, J. James, and U. V. Varadaraju, “Optimizing conditions and improved electrochemical performance of layered LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries,” Ionics (Kiel), vol. 28, no. 1, pp. 229-240, 2022. DOI: 10.1007/s11581-021-04297-2.

R. Zhao, Z. Yang, J. Liang, D. Lu, C. Liang, X. Guan, A. Gao, and H. Chen, “Understanding the role of Na-doping on Ni-rich layered oxide LiNi0.5Co0.2Mn0.3O2,” J Alloys Compd, vol. 689, pp. 318-325, 2016. DOI: 10.1016/j.jallcom.2016.07.230.

Z. Qiu, Y. Zhang, P. Dong, S. Xia, and Y. Yao, “A facile method for synthesis of LiNi0.8Co0.15Al0.05O2 cathode material,” Solid State Ion, vol. 307, pp. 73-78, 2017. DOI: 10.1016/j.ssi.2017.04.011.

K. Meng, Z. Wang, H. Guo, and X. Li, “Enhanced cycling stability of LiNi0.8Co0.1Mn0.1O2 by reducing surface oxygen defects,” Electrochim Acta, vol. 234, pp. 99-107, 2017. DOI: 10.1016/j.electacta.2017.03.054.

H. J. Noh, S. Youn, C. S. Yoon, and Y. K. Sun, “Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries,” J Power Sources, vol. 233, pp. 121-130, 2013. DOI: 10.1016/j.jpowsour.2013.01.063.

M. Zhang, J. Shen, J. Li, D. Zhang, Y. Yan, Y. Huang, and Z. Li, “Effect of micron-sized particle on the electrochemical properties of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode materials,” Ceram Int, vol. 46, no. 4, pp. 4643-4651, 2020. DOI: 10.1016/j.ceramint.2019.10.195.

H. Gu, J. Wang, Z. Wang, J. Tong, N. Qi, G. Han, and M. Zhang, “Self-assembled porous LiNi0.8Co0.1Mn0.1O2 cathode materials with micro/ nano-layered hollow morphologies for high-power lithium-ion batteries,” Appl Surf Sci, vol. 539, p. 148034, 2021. DOI: 10.1016/j.apsusc.2020.148034.

Copyright (c) 2024 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.