Study of Iron and Calcium Removal on Manganese Sulfate Precursors for Battery Cathode Raw Material Applications

Agsel Fauzia Hakim, Lia Andriyah, Soesaptri Oediyani, Latifa Hanum Lalasari, Eko Sulistiyono, Januar Irawan, Tri Arini, Fariza Eka Yunita, Ariyo Suharyanto, Iwan Setiawan, Florentinus Firdiyono, Akhmad Herman Yuwono

Abstract

Global battery sales are expected to reach $310.8 billion in 2027, up 14.1% from 2020. 95% of the world's batteries are lead-acid, lithium-ion, or nickel-based. One of the most popular batteries on the global market is lithium-ion, which uses MnSO4 powder as its cathode raw material. Manganese sulfate-based lithium-ion batteries can be made using Indonesian resources, specifically manganese ore from Trenggalek. Trenggalek manganese ore is of poor quality and contains impurities, primarily Fe and Ca. To produce 98% powder manganese sulfate, the solution is prepared, reduced with briquette charcoal, leached, precipitated, carbonated, and crystallised. NH4OH reagent is used to remove Fe through precipitation, and the carbonatation process is employed to eliminate Ca, resulting in 97.237% purity of manganese sulfate powder product. This outcome is achieved under precipitation process conditions of [NH4OH 2M], T = 80 °C, pH = 4, t =180 minutes, while carbonatation process conditions are T=50 °C, t = 120 minutes.

Keywords

Lithium-ion batteries; iron recipitation; carbonatation; manganese sulphate

Full Text:

PDF

References

E. Asadi Dalini, G. Karimi, S. Zandevakili, and M. Goodarzi, “A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries,” Miner. Process. Extr. Metall. Rev., vol. 00, pp. 1-22, 2020. DOI: 10.1080/08827508.2020.1781628.

J. Fleischmann, M. Hanicke, E. Horetsky, D. Ibrahim, S. Jautelat, and M. Linder, “Battery 2030: Resilient, sustainable, and circular,” McKinsey & Company, 2023. https://www.mckinsey.com/industries/automotive-and-assembly/our insights/battery-2030-resilient-sustainable-and-circula.

Itsuna, “Utilization of lithium batteries in electric vehicles,” ITS Online. 2022, [Online]. Available: https://www.its.ac.id/news/2022/02/17/pemanfaatan-baterai-lithium-dalam-kendaraan-listrik/.

A. E. Elsherief, “Study of the electroleaching of manganese ore,” Hydrometallurgy, vol. 55, no. 3, pp. 311-326, 2000. DOI: 10.1016/S0304-386X(99)00089-4.

Y. Min and Y. S. Jun, “Wollastonite carbonation in water-bearing supercritical CO2: Effects of water saturation conditions, temperature, and pressure,” Chem. Geol., vol. 483, pp. 239-246, 2018. DOI: 10.1016/j.chemgeo.2018.01.012.

M. Osali, F. Ahani, H. Khodaei, P. Mohammadi, J. Moghaddam, and S. Karimi, “Reductive leaching and recovery of nano-crystalline MnO2 from low-grade pyrolusite ore,” Journal of Sustainable Metallurgy, vol. 9, no. 3, pp. 1268-1278, 2023. DOI: 10.1007/s40831-023-00724-y.

X. Cai, F. Shen, Y. Zhang, H. Hu, Z. Huang, Y. Yin, X. Liang, Y. Qin, and J. Liang, “Mineralization of organics in hazardous waste sulfuric acid by natural manganese oxide ore and a combined MnO2/activated carbon treatment to produce qualified manganese sulfate,” J. Hazard. Mater., vol. 366, pp. 466-474, 2019. DOI: 10.1016/j.jhazmat.2018.12.021.

D. Cornu, R. Coustel, P. Durand, C. Carteret, and C. Ruby, “How can pH drop while adding NaOH? Formation and transformation of Mn4(OH)6SO4,” J. Solid State Chem., vol. 305, 2022. DOI: 10.1016/j.jssc.2021.122631.

R. Kusumaningrum, S. A. Rahmani, W. B. Widayatno, A. S. Wismogroho, D. W. Nugroho, S. Maulana, N. T. Rochman, and M. I. Amal, “Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products,” AIP Conf. Proc. 1964, 020042, 2021. DOI :10.1063/1.5038324

V. Singh, T. Chakraborty, and S. K. Tripathy, “A review of low-grade manganese ore upgradation processes,” Miner. Process. Extr. Metall. Rev., vol. 41, no. 6, pp. 417-438, 2020. DOI: 10.1080/08827508.2019.1634567.

M. A. Rashid, T. Acter, and N. Uddin, “The solvation dynamics of CO2 by quantum mechanical molecular dynamics,” Chem. Phys. Lett., vol. 832, p. 140861, 2023. DOI: 10.1016/j.cplett.2023.140861.

J. Conrad, S. Sasidharanpillai, and P. R. Tremaine, “Second dissociation constant of carbonic acid in H2O and D2O from 150 to 325 °C at p = 21 MPa using raman spectroscopy and a sapphire-windowed flow cell,” J. Phys. Chem. B, vol. 124, no. 13, pp. 2600-2617, 2020. DOI: 10.1021/acs.jpcb.9b11358.

A. Chernyaev, J. Zhang, S. Seisko, M. L. Kultanen, and M. Lundström, “Fe3+ and Al3+ removal by phosphate and hydroxide precipitation from synthetic NMC Li-ion battery leach solution,” Sci. Rep., vol. 13, no. 1, pp. 1-13, 2023. DOI: 10.1038/s41598-023-48247-6.

B. Al-Harbi, N. Aljeaban, A. Graham, and K. Sorbie, “Critical review on sulphide scale formation, removal and inhibition,” NACE - Int. Corros. Conf. Ser., pp. 23-25, 2020.

A. A. Nayl, I. M. Ismail, and H. F. Aly, “Recovery of pure MnSO4·H2O by reductive leaching of manganese from pyrolusite ore by sulfuric acid and hydrogen peroxide,” International Journal of Mineral Processing, vol. 100, no. 3-4. pp. 116-123, 2011. DOI: 10.1016/j.minpro.2011.05.003.

W. J. J. Huijgen, G. J. Witkamp, and R. N. J. Comans, “Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process,” Chem. Eng. Sci., vol. 61, no. 13, pp. 4242-4251, 2006. DOI: 10.1016/j.ces.2006.01.048.

Copyright (c) 2024 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.