Surface Modification of Composite Coating for Marine Application: A Short Review

Hafiz Aulia, Rini Riastuti, Rizal Tresna Ramdhani

Abstract

Corrosion is one of the phenomena that affects the deterioration of materials in offshore applications. Marine corrosion is particularly aggressive, due to the high salt content and low electrical resistivity of seawater. Corrosion cannot be stopped completely, but the reaction can be slowed down. Applying coating is an effective and widely used method to protect metal surfaces from corrosion. Coatings act as a barrier between the metal and its environment, preventing or slowing down the corrosive processes. Pursuant to ISO 12944, the most commonly used generics for coating systems in marine service are alkyd, acrylic, ethyl silicate, epoxy, vinyl ester, polyurethane, polyaspartic, and polysiloxane. The latest innovations in marine coatings still use a layer-by-layer coating method (e.g. primer coats, intermediate coats, and top coats) depending on thickness. Marine structures exposed to the atmospheric zones are usually coated with one or two coats of epoxy. A slightly more costly system of one coat of zinc-rich primer, one coat of epoxy, and one coat of aliphatic polyurethane may provide better performance. Coating systems for the atmospheric zones are frequently used in the intertidal and splash zones. Immersion zones of marine structures are commonly coated with one or two coats of 100% solid epoxy or three coats of solvent-borne epoxy. A single polymer as a generic coating have limitations. Adding fillers is a common method to improve the properties of polymers to become a composite. In marine coatings, fillers are still limited to glass flakes and powder. Poor dispersion and agglomeration might reduce the effectiveness of fillers in the matrix, which decreases the adhesion properties. The fillers must be surface modification before the application. This review provides a comprehensive and critical review of the current research status of composite coatings that serve as candidates to be used in marine coating.

Keywords

Corrosion; Marine coating; Composite; Surface modification

Full Text:

PDF

References

H. Kurnia, Sudarmono, A. Wahyuni, N. Adistyani, and A. Sulaeman, “Penggunaan Material Logam di Berbagai Industri Manufaktur Indonesia: Sistematik Kajian Literatur,” Industry Xplore, vol. 8, pp. 220–228, Mar. 2023, doi: 10.36805/teknikindustri.v8i1.5098.

S. Chandrasekaran and A. Jain, “Materials for Ocean Structures,” in Ocean Structures, CRC Press, 2016, pp. 129–194. doi: 10.1201/9781315366692-4.

H. Hastuti, A. Muhidu, R. Rastin, and E. Mokodompit, “Indonesia’s Marine Economic Potential As A Maritime Country: Marine Economy,” International Journal of Science, Technology & Management, vol. 4, pp. 813–825, Jul. 2023, doi: 10.46729/ijstm.v4i4.897.

D. Caesaron, Y. Maimury, and B. Peminatan, “Evaluasi dan Usulan Pengembangan Energi Terbarukan Untuk Keberlangsungan Energi Nasional,” 2014.

O. Sarhan and M. Raslan, “Offshore petroleum rigs/platforms: An overview of analysis, design, construction and installation,” International Journal of Advanced Engineering, Sciences and Applications, vol. 2, no. 1, pp. 7–12, Jan. 2021, doi: 10.47346/ijaesa.v2i1.58.

B. Isecke, M. Schütze, and H.-H. Strehblow, “Corrosion,” in Springer Handbook of Metrology and Testing, H. Czichos, T. Saito, and L. Smith, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 667–741. doi: 10.1007/978-3-642-16641-9_12.

M. Hayatdavoodi, “Dhanak and Xiros (Eds.): Springer Handbook of Ocean Engineering,” J Ocean Eng Mar Energy, vol. 3, no. 3, pp. 293–295, 2017, doi: 10.1007/s40722-017-0083-9.

R. W. Revie and H. H. Uhlig, “Frontmatter,” in Corrosion and Corrosion Control, Wiley, 2008. doi: 10.1002/9780470277270.fmatter.

L. L. Shreir, R. A. Jarman, and G. T. Burstein, Eds., “L.L. SHREIR, OBE 1914–1992,” in Corrosion (Third Edition), Oxford: Butterworth-Heinemann, 1994, pp. xiv–xv. doi: https://doi.org/10.1016/B978-0-08-052351-4.50003-0.

G. A. Cragnolino, “2 - Corrosion fundamentals and characterization techniques,” in Techniques for Corrosion Monitoring (Second Edition), L. Yang, Ed., Woodhead Publishing, 2021, pp. 7–42. doi: https://doi.org/10.1016/B978-0-08-103003-5.00002-3.

U. Wahyuningsih, H. Rusjdi, E. Sulistiyo, J. T. Mesin, S. Tinggi Stt -Pln, and W. Com, “Penanggulangan Korosi pada Pipa Gas dengan Metode Catodic Protection (Anoda Korban) PT PGN Solution Area Tanggerang,” Jurnal Power Plant, vol. 5, no. 1.

A. López-Ortega, R. Bayón, and J. L. Arana, “Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater,” Surf Coat Technol, vol. 349, pp. 1083–1097, Sep. 2018, doi: 10.1016/j.surfcoat.2018.06.089.

M. F. Montemor, “Functional and smart coatings for corrosion protection: A review of recent advances,” Surf Coat Technol, vol. 258, pp. 17–37, 2014, doi: https://doi.org/10.1016/j.surfcoat.2014.06.031.

H. Tamura, “The role of rusts in corrosion and corrosion protection of iron and steel,” Corros Sci, vol. 50, no. 7, pp. 1872–1883, 2008, doi: https://doi.org/10.1016/j.corsci.2008.03.008.

A. H. Al-Moubaraki and I. B. Obot, “Corrosion challenges in petroleum refinery operations: Sources, mechanisms, mitigation, and future outlook,” Journal of Saudi Chemical Society, vol. 25, no. 12, p. 101370, 2021, doi: https://doi.org/10.1016/j.jscs.2021.101370.

Z. Tian et al., “Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings,” RSC Advances, vol. 4, no. 54. Royal Society of Chemistry, pp. 28195–28208, 2014. doi: 10.1039/c4ra03146f.

I. S. Cole and D. Marney, “The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils,” Corros Sci, vol. 56, pp. 5–16, 2012, doi: https://doi.org/10.1016/j.corsci.2011.12.001.

M. Yasir, F. Ahmad, P. Megat-Yusoff, S. Ullah, and M. Jimenez, “Latest trends for structural steel protection by using intumescent fire protective coatings: a review,” Surface Engineering, vol. 36, pp. 1–30, Jul. 2019, doi: 10.1080/02670844.2019.1636536.

M. A. Malik, M. A. Hashim, F. Nabi, S. A. Al-Thabaiti, and Z. Khan, “Anti-corrosion Ability of Surfactants: A Review,” 2011. [Online]. Available: www.electrochemsci.org

K. L. Mercer and W. F. Langelier, “The Analytical Control of Anti‐Corrosion Water Treatment,” J Am Water Works Assoc, vol. 110, 1936, [Online]. Available: https://api.semanticscholar.org/CorpusID:107825312

J. B. Wachtman and R. A. Haber, “Ceramic Films and Coatings,” 1993. [Online]. Available: https://api.semanticscholar.org/CorpusID:109813803

A. Stankiewicz, I. Szczygieł, and B. Szczygieł, “Self-healing coatings in anti-corrosion applications,” J Mater Sci, vol. 48, pp. 8041–8051, 2013, [Online]. Available: https://api.semanticscholar.org/CorpusID:59451802

M. R. Thakare, J. A. Wharton, R. J. K. Wood, and C. Menger, “Exposure effects of alkaline drilling fluid on the microscale abrasion–corrosion of WC-based hardmetals,” Wear, vol. 263, no. 1, pp. 125–136, 2007, doi: https://doi.org/10.1016/j.wear.2006.12.047.

V. Sharma, S. Kumar, M. Kumar, and D. Deepak, “High temperature oxidation performance of Ni-Cr-Ti and Ni-5Al coatings,” Mater Today Proc, vol. 26, pp. 3397–3406, 2020, doi: https://doi.org/10.1016/j.matpr.2019.11.048.

E. G. Kocheemoolayil and M. Andy, “MARINE CORROSION AND ITS MANAGEMENT.”

J. Zhang et al., “Integration of Antifouling and Anti-Cavitation Coatings on Propellers: A Review,” Coatings, vol. 13, no. 9, 2023, doi: 10.3390/coatings13091619.

A. Wang, K. De Silva, M. Jones, P. Robinson, G. Larribe, and W. Gao, “Anticorrosive coating systems for marine propellers,” Prog Org Coat, vol. 183, p. 107768, 2023, doi: https://doi.org/10.1016/j.porgcoat.2023.107768.

ISO 12944-5, Paints and varnishes - Corrosion protection of steel structures by protective paint systems, 3rd ed. Switzerland: ISO, 2018.

B. N. Popov, “Chapter 13 - Organic Coatings,” in Corrosion Engineering, B. N. Popov, Ed., Amsterdam: Elsevier, 2015, pp. 557–579. doi: https://doi.org/10.1016/B978-0-444-62722-3.00013-6.

“PORT TECHNOLOGY INTERNATIONAL 63 MOORING AND BERTHING.” [Online]. Available: www.porttechnology.org

Northpoint Ltd, “The Power of Powder Coating.”

A. Palanisamy, N. V Salim, J. Parameswaranpillai, and N. Hameed, “Water Sorption and Solvent Sorption of Epoxy/Block-Copolymer and Epoxy/Thermoplastic Blends,” in Handbook of Epoxy Blends, J. Parameswaranpillai, N. Hameed, J. Pionteck, and E. M. Woo, Eds., Cham: Springer International Publishing, 2017, pp. 1097–1111. doi: 10.1007/978-3-319-40043-3_40.

M. Liu, X. Mao, H. Zhu, A. Lin, and D. Wang, “Water and corrosion resistance of epoxy–acrylic–amine waterborne coatings: Effects of resin molecular weight, polar group and hydrophobic segment,” Corros Sci, vol. 75, pp. 106–113, 2013, doi: https://doi.org/10.1016/j.corsci.2013.05.020.

Louis H. Sharpe, Adhesion International 1993, 1st Edition. London: Taylor & Francis Group, 1996.

A. Mirmohseni and S. Zavareh, “Preparation and characterization of an epoxy nanocomposite toughened by a combination of thermoplastic, layered and particulate nano-fillers,” Mater Des, vol. 31, no. 6, pp. 2699–2706, 2010, doi: https://doi.org/10.1016/j.matdes.2010.01.035.

A. M. Madhusudhana, K. N. S. Mohana, M. B. Hegde, S. R. Nayak, K. Rajitha, and N. K. Swamy, “Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium,” Adv Compos Hybrid Mater, vol. 3, no. 2, pp. 141–155, 2020, doi: 10.1007/s42114-020-00142-8.

G. Xiong et al., “Improved adhesion, heat resistance, anticorrosion properties of epoxy resins/POSS/methyl phenyl silicone coatings,” Prog Org Coat, vol. 135, pp. 454–464, 2019, doi: https://doi.org/10.1016/j.porgcoat.2019.06.017.

H. Zhao, J. Ding, P. Liu, and H. Yu, “Boron nitride-epoxy inverse ‘nacre-like’ nanocomposite coatings with superior anticorrosion performance,” Corros Sci, vol. 183, p. 109333, 2021, doi: https://doi.org/10.1016/j.corsci.2021.109333.

J. Ding, H. Zhao, M. Zhou, P. Liu, and H. Yu, “Super-anticorrosive inverse nacre-like graphene-epoxy composite coating,” Carbon N Y, vol. 181, pp. 204–211, 2021, doi: https://doi.org/10.1016/j.carbon.2021.05.017.

F.-L. Jin, X. Li, and S.-J. Park, “Synthesis and application of epoxy resins: A review,” Journal of Industrial and Engineering Chemistry, vol. 29, pp. 1–11, 2015, doi: https://doi.org/10.1016/j.jiec.2015.03.026.

J. Zhu, C. Abeykoon, and N. Karim, “Investigation into the effects of fillers in polymer processing,” International Journal of Lightweight Materials and Manufacture, vol. 4, no. 3, pp. 370–382, 2021, doi: https://doi.org/10.1016/j.ijlmm.2021.04.003.

R. Muraliraja, T. R. Tamilarasan, S. Udayakumar, and C. K. Arvinda Pandian, “The Effect of Fillers on the Tribological Properties of Composites,” in Tribological Applications of Composite Materials, M. T. Hameed Sultan, M. R. Mohd Jamir, M. S. Abdul Majid, A. I. Azmi, and N. Saba, Eds., Singapore: Springer Singapore, 2021, pp. 243–266.

doi: 10.1007/978-981-15-9635-3_9.

Y. Ren et al., “A review on tribology of polymer composite coatings,” Friction, vol. 9, no. 3. Tsinghua University, pp. 429–470, Jun. 01, 2021. doi: 10.1007/s40544-020-0446-4.

C. Su, F. Xue, T. Li, Y. Xin, and M. Wang, “Study on the Tribological Properties of Carbon Fabric/Polyimide Composites Filled with SiC Nanoparticles,” Journal of Macromolecular Science, Part B, vol. 55, no. 6, pp. 627–641, Jun. 2016, doi: 10.1080/00222348.2016.1179248.

A. S. H. Makhlouf, “1 - Current and advanced coating technologies for industrial applications,” in Nanocoatings and Ultra-Thin Films, A. S. H. Makhlouf and I. Tiginyanu, Eds., Woodhead Publishing, 2011, pp. 3–23. doi: https://doi.org/10.1533/9780857094902.1.3.

Q. Zhang, D. Sando, and V. Nagarajan, “Chemical route derived bismuth ferrite thin films and nanomaterials,” J Mater Chem C Mater, vol. 4, no. 19, pp. 4092–4124, 2016, doi: 10.1039/C6TC00243A.

H. G. Prengel, W. R. Pfouts, and A. T. Santhanam, “State of the art in hard coatings for carbide cutting tools,” Surf Coat Technol, vol. 102, no. 3, pp. 183–190, 1998, doi: https://doi.org/10.1016/S0257-8972(96)03061-7.

P. P. Luff and M. White, “The structure and properties of evaporated polyethylene thin films,” Thin Solid Films, vol. 6, no. 3, pp. 175–195, 1970, doi: https://doi.org/10.1016/0040-6090(70)90038-6.

J.-O. Carlsson and P. M. Martin, “Chapter 7 - Chemical Vapor Deposition,” in Handbook of Deposition Technologies for Films and Coatings (Third Edition), P. M. Martin, Ed., Boston: William Andrew Publishing, 2010, pp. 314–363. doi: https://doi.org/10.1016/B978-0-8155-2031-3.00007-7.

V. Khanna et al., “Engineering Electrical and Thermal Attributes of Two-Dimensional Graphene Reinforced Copper/Aluminium Metal Matrix Composites for Smart Electronics,” ECS Journal of Solid State Science and Technology, vol. 11, no. 12, p. 127001, 2022, doi: 10.1149/2162-8777/aca933.

T. Maruyama and T. Kanagawa, “Electrochromic Properties of Niobium Oxide Thin Films Prepared by Chemical Vapor Deposition,” J Electrochem Soc, vol. 141, no. 10, p. 2868, 1994, doi: 10.1149/1.2059247.

K.-H. Dahmen, “Chemical Vapor Deposition,” in Encyclopedia of Physical Science and Technology (Third Edition), R. A. Meyers, Ed., New York: Academic Press, 2003, pp. 787–808. doi: https://doi.org/10.1016/B0-12-227410-5/00102-2.

B. Fotovvati, S. F. Wayne, G. Lewis, and E. Asadi, “A Review on Melt-Pool Characteristics in Laser Welding of Metals,” Advances in Materials Science and Engineering, vol. 2018, p. 4920718, 2018, doi: 10.1155/2018/4920718.

D. Sreekanth and N. Rameshbabu, “Development and characterization of MgO/hydroxyapatite composite coating on AZ31 magnesium alloy by plasma electrolytic oxidation coupled with electrophoretic deposition,” Mater Lett, vol. 68, pp. 439–442, 2012,

doi: https://doi.org/10.1016/j.matlet.2011.11.025.

S. P. Sah, Y. Tatsuno, Y. Aoki, and H. Habazaki, “Dielectric breakdown and healing of anodic oxide films on aluminium under single pulse anodizing,” Corros Sci, vol. 53, no. 5, pp. 1838–1844, 2011, doi: https://doi.org/10.1016/j.corsci.2011.02.001.

M. Dziaduszewska, M. Shimabukuro, T. Seramak, A. Zieliński, and T. Hanawa, “Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy,” Coatings, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:225445191

W. Shang, B. Chen, X. Shi, Y. Chen, and X. Xiao, “Electrochemical corrosion behavior of composite MAO/sol–gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol–gel technique,” J Alloys Compd, vol. 474, no. 1, pp. 541–545, 2009, doi: https://doi.org/10.1016/j.jallcom.2008.06.135.

M. R. Bayati, A. Z. Moshfegh, and F. Golestani-Fard, “Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping?,” Mater Lett, vol. 64, pp. 2215–2218, 2010, [Online]. Available: https://api.semanticscholar.org/CorpusID:97620342

D. Sreekanth, N. Rameshbabu, and K. Venkateswarlu, “Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation,” Ceram Int, vol. 38, no. 6, pp. 4607–4615, 2012, doi: https://doi.org/10.1016/j.ceramint.2012.02.040.

L. Rama Krishna, K. R. C. Somaraju, and G. Sundararajan, “The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation,” Surf Coat Technol, vol. 163–164, pp. 484–490, 2003, doi: https://doi.org/10.1016/S0257-8972(02)00646-1.

D. Venkateswarlu, N. Rameshbabu, S. D, A. C. Bose, V. Muthupandi, and S. Subramanian, “K.Venkateswarlu, N. Rameshbabu, D. Sreekanth, A.C. Bose, V. Muthupandi, S. Subramanian, Fabrication and characterization of micro arc oxidized fluoride containing titania films on Cp Ti, Ceramics International, 39 (2013) 801 –812.,” Ceram Int, vol. 39, p. 801, Jul. 2013, doi: 10.1016/j.ceramint.2012.07.001.

S. Sampath, V. Alagan, bullet Venkateswarlu, N. Rameshbabu, and N. Parthasarathi, “Enhanced visible light photocatalytic activity of P-block elements (C, N and F) doped porous TiO 2 coatings on Cp-Ti by micro-arc oxidation,” Journal of Porous Materials, vol. 22, pp. 545–557, Feb. 2015.

E. Linga Reddy, J. Karuppiah, H. C. Lee, and D. H. Kim, “Steam reforming of methanol over copper loaded anodized aluminum oxide (AAO) prepared through electrodeposition,” J Power Sources, vol. 268, pp. 88–95, 2014, doi: https://doi.org/10.1016/j.jpowsour.2014.05.082.

Y. Sasikumar, K. Indira, and N. Rajendran, “Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review,” J Bio Tribocorros, vol. 5, no. 2, p. 36, 2019, doi: 10.1007/s40735-019-0229-5.

S. Kumar, A. Handa, V. Chawla, N. K. Grover, and R. Kumar, “Performance of thermal-sprayed coatings to combat hot corrosion of coal-fired boiler tube and effect of process parameters and post-coating heat treatment on coating performance: a review,” Surface Engineering, vol. 37, no. 7. Taylor and Francis Ltd., pp. 833–860, 2021. doi: 10.1080/02670844.2021.1924506.

S. Kumar, M. Kumar, and N. Jindal, “Overview of cold spray coatings applications and comparisons: a critical review,” World Journal of Engineering, vol. 17, no. 1, pp. 27–51, Jan. 2020, doi: 10.1108/WJE-01-2019-0021.

E. Sadeghi, N. Markocsan, and S. V Joshi, “Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants. Part I: Effect of Composition and Microstructure,” Journal of Thermal Spray Technology, vol. 28, pp. 1749–1788, 2019, [Online]. Available: https://api.semanticscholar.org/CorpusID:207990369

P. M. J. Vuoristo, “Thermal Spray Coating Processes,” 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:138861236

R. Goyal, B. Sidhu, and V. Chawla, “Hot Corrosion Performance of Plasma-Sprayed Multiwalled Carbon Nanotube–Al2O3 Composite Coatings in a Coal-Fired Boiler at 900 °C,” J Mater Eng Perform, vol. 29, pp. 1–12, Sep. 2020, doi: 10.1007/s11665-020-05070-8.

S. Kongparakul et al., “Self-healing hybrid nanocomposite anticorrosive coating from epoxy/modified nanosilica/perfluorooctyl triethoxysilane,” Prog Org Coat, vol. 104, pp. 173–179, 2017, doi: https://doi.org/10.1016/j.porgcoat.2016.12.020.

S. M. Shang and W. Zeng, “4 - Conductive nanofibres and nanocoatings for smart textiles,” in Multidisciplinary Know-How for Smart-Textiles Developers, T. Kirstein, Ed., Woodhead Publishing, 2013, pp. 92–128. doi: https://doi.org/10.1533/9780857093530.1.92.

N. Raghavendra et al., “Effect of Nanoclays on the performance of Mechanical, Thermal and Flammability of Vinylester based nanocomposites,” Mater Today Proc, vol. 4, pp. 12109–12117, Jan. 2017, doi: 10.1016/j.matpr.2017.09.138.

M. Alsaadi, M. Bulut, A. Erklig, and A. Jabbar, “Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites,” Compos B Eng, vol. 152, Jul. 2018, doi: 10.1016/j.compositesb.2018.07.015.

M. Behzadnasab, M. Mirabedini, and K. Kabiri, “Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating,” Compos Part A Appl Sci Manuf, vol. 43, p. 2095, Nov. 2012, doi: 10.1016/j.compositesa.2012.07.002.

M. Behzadnasab, M. Mirabedini, and M. Esfandeh, “Corrosion protection of steel by epoxy nanocomposite coatings containing various combinations of clay and nanoparticulate zirconia,” Corros Sci, vol. 75, Jun. 2013, doi: 10.1016/j.corsci.2013.05.024.

M. Bagci, M. Demirci, E. Şükür, and H. Kaybal, “The effect of nanoclay particles on the incubation period in solid particle erosion of glass fibre/epoxy nanocomposites,” Wear, vol. 444–445, p. 203159, Dec. 2019, doi: 10.1016/j.wear.2019.203159.

A. M. Kumar, A. Khan, R. Suleiman, M. Qamar, S. Saravanan, and H. Dafalla, “Bifunctional CuO/TiO2 nanocomposite as nanofiller for improved corrosion resistance and antibacterial protection,” Prog Org Coat, vol. 114, pp. 9–18, 2018, doi: https://doi.org/10.1016/j.porgcoat.2017.09.013.

J. E. O. Mayne, “THE MECHANISM OF THE PROTECTION OF IRON AND STEEL BY PAINT,” Anti-Corrosion Methods and Materials, vol. 20, no. 10, pp. 3–8, Jan. 1973, doi: 10.1108/eb006930.

Z. W. Wicks, Organic coatings : science and technology. Wiley-Interscience, 2007.

Y. Ren et al., “A review on tribology of polymer composite coatings,” Friction, vol. 9, no. 3. Tsinghua University, pp. 429–470, Jun. 01, 2021. doi: 10.1007/s40544-020-0446-4.

G. Wang, D. Yu, A. D. Kelkar, and L. Zhang, “Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials,” Prog Polym Sci, vol. 75, pp. 73–107, 2017, doi: https://doi.org/10.1016/j.progpolymsci.2017.08.002.

M. G. Segatelli, I. V. P. Yoshida, and M. do C. Gonçalves, “Natural silica fiber as reinforcing filler of nylon 6,” Compos B Eng, vol. 41, no. 1, pp. 98–105, 2010, doi: https://doi.org/10.1016/j.compositesb.2009.05.006.

J. N. Coleman, U. Khan, and Y. K. Gun’ko, “Mechanical Reinforcement of Polymers Using Carbon Nanotubes,” Advanced Materials, vol. 18, no. 6, pp. 689–706, Mar. 2006, doi: https://doi.org/10.1002/adma.200501851.

P. Podsiadlo et al., “Ultrastrong and stiff layered polymer nanocomposites,” Science (1979), vol. 318, no. 5847, pp. 80–83, 2007, doi: 10.1126/science.1143176.

S. V Panin, D. A. Nguyen, L. A. Kornienko, L. R. Ivanova, and B. B. Ovechkin, “Comparison on efficiency of solid-lubricant fillers for polyetheretherketone-based composites,” AIP Conf Proc, vol. 2051, no. 1, p. 020232, Dec. 2018, doi: 10.1063/1.5083475.

P. Cai, T. Wang, and Q. Wang, “Effect of several solid lubricants on the mechanical and tribological properties of phenolic resin-based composites,” Polym Compos, vol. 36, no. 12, pp. 2203–2211, Dec. 2015, doi: https://doi.org/10.1002/pc.23132.

M. Zalaznik, M. Kalin, S. Novak, and G. Jakša, “Effect of the type, size and concentration of solid lubricants on the tribological properties of the polymer PEEK,” Wear, vol. 364–365, pp. 31–39, 2016, doi: https://doi.org/10.1016/j.wear.2016.06.013.

Q. B. Guo, M. Z. Rong, G. L. Jia, K. T. Lau, and M. Q. Zhang, “Sliding wear performance of nano-SiO2/short carbon fiber/epoxy hybrid composites,” Wear, vol. 266, no. 7, pp. 658–665, 2009, doi: https://doi.org/10.1016/j.wear.2008.08.005.

W. Zhai, N. Srikanth, L. B. Kong, and K. Zhou, “Carbon nanomaterials in tribology,” Carbon N Y, vol. 119, pp. 150–171, 2017, doi: https://doi.org/10.1016/j.carbon.2017.04.027.

W. Zhai and K. Zhou, “Nanomaterials in Superlubricity,” Adv Funct Mater, vol. 29, no. 28, p. 1806395, Jul. 2019, doi: https://doi.org/10.1002/adfm.201806395.

T. Agag, T. Koga, and T. Takeichi, “Studies on thermal and mechanical properties of polyimide–clay nanocomposites,” Polymer (Guildf), vol. 42, no. 8, pp. 3399–3408, 2001, doi: https://doi.org/10.1016/S0032-3861(00)00824-7.

H. Wang, C. Zeng, M. D. Elkovitch, L. J. Lee, and K. W. Koelling, “Processing and properties of polymeric nano-composites,” Polym Eng Sci, vol. 41, pp. 2036–2046, 2001, [Online]. Available: https://api.semanticscholar.org/CorpusID:137568665

M. Tolinski, “Overview of Fillers and Fibers,” in Additives for Polyolefins, Elsevier, 2009, pp. 93–119. doi: 10.1016/b978-0-8155-2051-1.00007-8.

H.-J. Song and Z.-Z. Zhang, “Investigation of the tribological properties of polyfluo wax/polyurethane composite coating filled with nano-SiC or nano-ZrO2,” Materials Science and Engineering: A, vol. 426, no. 1, pp. 59–65, 2006, doi: https://doi.org/10.1016/j.msea.2006.03.104.

Y. Chen, S. Zhou, H. Yang, and L. Wu, “Structure and properties of polyurethane/nanosilica composites,” J Appl Polym Sci, vol. 95, pp. 1032–1039, Mar. 2005, doi: 10.1002/app.21180.

G. Zhang, A. K. Schlarb, S. Tria, and O. Elkedim, “Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique,” Compos Sci Technol, vol. 68, no. 15, pp. 3073–3080, 2008, doi: https://doi.org/10.1016/j.compscitech.2008.06.027.

S. S. Vaisakh, A. A. Peer Mohammed, M. Hassanzadeh, J. F. Tortorici, R. Metz, and S. Ananthakumar, “Effect of nano-modified SiO2/Al2O3 mixed-matrix micro-composite fillers on thermal, mechanical, and tribological properties of epoxy polymers,” Polym Adv Technol, vol. 27, no. 7, pp. 905–914, Jul. 2016, doi: https://doi.org/10.1002/pat.3747.

H.-J. Song, Z.-Z. Zhang, and X.-H. Men, “The tribological behaviors of the polyurethane coating filled with nano-SiO2 under different lubrication conditions,” Compos Part A Appl Sci Manuf, vol. 39, no. 2, pp. 188–194, 2008, doi: https://doi.org/10.1016/j.compositesa.2007.11.003.

I. D. Sideridou and M. M. Karabela, “Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites,” Dental Materials, vol. 25, no. 11, pp. 1315–1324, 2009, doi: https://doi.org/10.1016/j.dental.2009.03.016.

J. Antonucci, S. Dickens, B. Fowler, H. Xu, and W. McDonough, “Chemistry of Silanes Interfaces in Dental Polymers and Composites,” 2005, [Online]. Available: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=854442

M. Behzadnasab, S. M. Mirabedini, K. Kabiri, and S. Jamali, “Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution,” Corros Sci, vol. 53, no. 1, pp. 89–98, Jan. 2011, doi: 10.1016/j.corsci.2010.09.026.

M. Behzadnasab, S. M. Mirabedini, and M. Esfandeh, “Corrosion protection of steel by epoxy nanocomposite coatings containing various combinations of clay and nanoparticulate zirconia,” Corros Sci, vol. 75, pp. 134–141, Oct. 2013, doi: 10.1016/j.corsci.2013.05.024.

S. M. Mirabedini, M. Behzadnasab, and K. Kabiri, “Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating,” Compos Part A Appl Sci Manuf, vol. 43, no. 11, pp. 2095–2106, Nov. 2012, doi: 10.1016/j.compositesa.2012.07.002.

M. G. Sari, M. Abdolmaleki, M. Rostami, and B. Ramezanzadeh, “Nanoclay dispersion and colloidal stability improvement in phenol novolac epoxy composite via graphene oxide for the achievement of superior corrosion protection performance,” Corros Sci, vol. 173, Aug. 2020, doi: 10.1016/j.corsci.2020.108799.

J. Li, L. Ecco, M. Fedel, V. Ermini, G. Delmas, and J. Pan, “In-situ AFM and EIS study of a solventborne alkyd coating with nanoclay for corrosion protection of carbon steel,” Prog Org Coat, vol. 87, pp. 179–188, Oct. 2015, doi: 10.1016/j.porgcoat.2015.06.003.

Alvian, Kenrick, and I. Iskandinata, “Pengaruh Penambahan Bentonit Termodifikasi Sebagai Pengisi Terhadap Sifat Mekanik dan Penyerapan Air Komposit Epoksi,” Jurnal Teknik Kimia USU, vol. 5, pp. 39–44, Jan. 2017, doi: 10.32734/jtk.v5i4.1553.

B. Soegijono, F. Susetyo, and H. Notonegoro, “Perilaku Ketahanan Korosi Komposit Coating Poliuretan/Silika/ Karbon Pada Baja Karbon Rendah,” FLYWHEEL : Jurnal Teknik Mesin Untirta, p. 57, Apr. 2019, doi: 10.36055/fwl.v0i0.4775.

H. Ummah and ) Munasir, “Studi Sifat Anti-Korosi Material Coating CAT-PANi/SiO2 dengan Metode Polarisasi Linear,” 2015.

G. Mahfuzh, “Pengaruh Penambahan Metalloam Terhadap Ketahanan Korosi dan Daya Lekat Pelapisan dengan Cat Epoksi Primer yang di Aplikasikan Pada Substrat Baja Karbon Rendah,” University of Indonesia, Depok, 2010.

R. A. Nugraha, “Karakteristik Material Komposit Nano Polyaniline (PANi) dan Oksida Grafena Tereduksi (rGO) Sebagai Pelapis Proteksi Korosi dan Katalis Pada katoda DSSC dengan Substrat Baja Karbon AISI 1086,” University of Indonesia, Depok, 2018.

Arham, “Performa Ketahanan Korosi Baja ST-37 Dilapisi Komposit Epoksi - ZnO Dengan Modifikasi Permukaan Melalui Metode Electrochemical Impedance Spectroscopy,” Universitas Indonesia, Depok, 2022.

J. Li et al., “Development of an eco-friendly waterborne polyurethane/catecholamine/sol-gel composite coating for achieving long-lasting corrosion protection on Mg alloy AZ31,” Prog Org Coat, vol. 183, Oct. 2023, doi: 10.1016/j.porgcoat.2023.107732.

Y. Li et al., “Waterborne epoxy composite coating with long-term corrosion resistance through synergy of MXene nanosheets and ZnO quantum dots,” Colloids Surf A Physicochem Eng Asp, vol. 681, p. 132707, 2024, doi: https://doi.org/10.1016/j.colsurfa.2023.132707.

M. Thakran and S. Lata, “Polybenzopyrrole/nano-alumina composite blend with zirconium silicate reinforced epoxy as protective coating to subside corrosion of carbon steel within a dilute NaCl solution,” J Mol Struct, vol. 1298, p. 137068, 2024, doi: https://doi.org/10.1016/j.molstruc.2023.137068.

L. Xie et al., “Exploring salt-mist corrosion resistance of GPTMS functionalized graphene oxide reinforced epoxy resin composite coating on shot-peened Ti-15333 titanium alloy,” Surfaces and Interfaces, vol. 44, p. 103675, 2024, doi: https://doi.org/10.1016/j.surfin.2023.103675.

W. Chen et al., “Achieving superior anti-corrosion properties of vinyl ester resin coatings via compositing with 3-methacryloxy propyl trimethoxysilane functionalized MXene nanosheets,” Polym Test, vol. 127, p. 108203, 2023, doi: https://doi.org/10.1016/j.polymertesting.2023.108203.

Y. Chen et al., “Two-dimensional lamellar MXene nanosheets/waterborne epoxy composite coating: Dopamine triggered surface modification and long-term anticorrosion performance,” Colloids Surf A Physicochem Eng Asp, vol. 674, p. 131865, 2023, doi: https://doi.org/10.1016/j.colsurfa.2023.131865.

B. Peng et al., “Boron nitride and ZIF-67 composite material to improve the long term corrosion resistance of epoxy resin coating,” Diam Relat Mater, vol. 139, Nov. 2023, doi: 10.1016/j.diamond.2023.110299.

Y. Teng et al., “Superhydrophobic and corrosion-resistant of 2-methylimidazolezincsalt-based coating enhanced with silane modification,” Colloids Surf A Physicochem Eng Asp, vol. 683, p. 132940, Feb. 2024, doi: 10.1016/j.colsurfa.2023.132940.

Y. Liu, F. Meng, F. Wang, and L. Liu, “Dual-action epoxy coating with anti-corrosion and antibacterial properties based on well-dispersed ZnO/basalt composite,” Composites Communications, vol. 42, Oct. 2023, doi: 10.1016/j.coco.2023.101674.

C. A. Xu et al., “Vanillin and organosilicon functionalized graphene oxide modified ester resin composite coatings with excellent anti-corrosion properties,” Prog Org Coat, vol. 183, Oct. 2023, doi: 10.1016/j.porgcoat.2023.107804.

S. Li et al., “Enhanced corrosion resistance of self-healing waterborne polyurethane coating based on tannic acid modified cerium-montmorillonites composite fillers,” Prog Org Coat, vol. 178, p. 107454, 2023, doi: https://doi.org/10.1016/j.porgcoat.2023.107454.

S. S. Ashok Kumar, I. A. Wonnie Ma, K. Ramesh, and S. Ramesh, “Development of graphene incorporated acrylic-epoxy composite hybrid anti-corrosion coatings for corrosion protection,” Mater Chem Phys, vol. 303, p. 127731, 2023, doi: https://doi.org/10.1016/j.matchemphys.2023.127731.

J. Zhang et al., “Improvement of wear-resistance and anti-corrosion of waterborne epoxy coating by synergistic modification of glass flake with phytic acid and Zn2+,” Ceram Int, vol. 49, no. 11, Part A, pp. 17910–17920, 2023, doi: https://doi.org/10.1016/j.ceramint.2023.02.158.

J. Wei, T. Shen, W. Cao, L. Jiang, Y. He, and W. Li, “Colorable photothermal-induced self-repairing anti-corrosion coating based on confined solid-liquid transition,” J Mater Sci Technol, 2024, doi: https://doi.org/10.1016/j.jmst.2024.02.052.

N. Shi et al., “H-BN base triple-functional filler enhances the anti-corrosion performance of epoxy coating,” Polymer (Guildf), p. 126975, 2024, doi: https://doi.org/10.1016/j.polymer.2024.126975.

C. Xie et al., “Long-lasting anti-corrosion of superhydrophobic coating by synergistic modification of graphene oxide with polydopamine and cerium oxide,” Constr Build Mater, vol. 418, p. 135283, 2024, doi: https://doi.org/10.1016/j.conbuildmat.2024.135283.

Z. Yang et al., “High-efficiency graphene/epoxy composite coatings with outstanding thermal conductive and anti-corrosion performance,” Compos Part A Appl Sci Manuf, vol. 181, p. 108152, 2024, doi: https://doi.org/10.1016/j.compositesa.2024.108152.

M. Esmailzadeh, E. Tammari, T. Safarpour, S. M. Razavian, and L. Pezzato, “Anti-corrosion effect of chitin and chitosan nanoparticles in epoxy coatings,” Mater Chem Phys, vol. 317, p. 129097, 2024, doi: https://doi.org/10.1016/j.matchemphys.2024.129097.

G. Khorgami, S. Arash Haddadi, M. Okati, T. H. Mekonnen, and B. Ramezanzadeh, “In situ-polymerized and nano-hybridized Ti3C2-MXene with PDA and Zn-MOF carrying phosphate/glutamate molecules; toward the development of pH-stimuli smart anti-corrosion coating,” Chemical Engineering Journal, vol. 484, p. 149630, 2024, doi: https://doi.org/10.1016/j.cej.2024.149630.

J. Sun, J. Wang, W. Xu, and B. Zhang, “A mechanically robust superhydrophobic corrosion resistant coating with self-healing capability,” Mater Des, vol. 240, p. 112881, 2024, doi: https://doi.org/10.1016/j.matdes.2024.112881.

P. sheng SUI, C. bao LIU, A. meng ZHANG, C. SUN, L. yue CUI, and R. chang ZENG, “Superior corrosion resistance and thermal/electro properties of graphene−epoxy composite coating on Mg alloy with biomimetic interface and orientation,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 34, no. 1, pp. 157–170, Jan. 2024, doi: 10.1016/S1003-6326(23)66388-5.

V. S. Sumi et al., “PANI-Fe2O3 composite for enhancement of active life of alkyd resin coating for corrosion protection of steel,” Mater Chem Phys, vol. 247, p. 122881, 2020, doi: https://doi.org/10.1016/j.matchemphys.2020.122881.

G. V. Pham et al., “Solution blending preparation of polyurethane/graphene composite: Improving the mechanical and anti-corrosive properties of the coating on aluminum surface,” Mater Lett, vol. 359, p. 135905, 2024, doi: https://doi.org/10.1016/j.matlet.2024.135905.

S. S. Ashok Kumar, I. A. Wonnie Ma, K. Ramesh, and S. Ramesh, “The synergistic effects of graphene on the physical, hydrophobic, surface, and thermal properties of acrylic-epoxy-polydimethylsiloxane composite coatings,” Int J Adhes Adhes, vol. 128, p. 103546, 2024, doi: https://doi.org/10.1016/j.ijadhadh.2023.103546.

J. Wang, L. Zhang, and C. Li, “Superhydrophobic and mechanically robust polysiloxane composite coatings containing modified silica nanoparticles and PS-grafted halloysite nanotubes,” Chin J Chem Eng, vol. 52, pp. 56–65, 2022, doi: https://doi.org/10.1016/j.cjche.2021.12.017.

H. Salehinasab, R. Majidi, I. Danaee, L. Vrsalović, S. Saliminasab, and D. Zarei, “Engineering a zinc-rich ethyl silicate coating based on nickel oxide nanoparticles for improving anticorrosion performance,” Hybrid Advances, vol. 5, p. 100132, 2024, doi: https://doi.org/10.1016/j.hybadv.2023.100132.

Y. Ouyang, Z. Huang, R. Fang, L. Wu, Q. Yong, and Z.-H. Xie, “Silica nanoparticles enhanced polysiloxane-modified nickel-based coatings on Mg alloy for robust superhydrophobicity and high corrosion resistance,” Surf Coat Technol, vol. 450, p. 128995, 2022, doi: https://doi.org/10.1016/j.surfcoat.2022.128995.

H. Fang, Y. Dai, Z. Lu, Z. Yang, and Y. Wei, “Enhancement of barrier and corrosion protection performance of vinyl ester resin coating via incorporation of MXene nanosheets,” Results in Engineering, vol. 19, p. 101330, 2023, doi: https://doi.org/10.1016/j.rineng.2023.101330.

P. Gong, Y. Li, and G. Zhang, “Enhancing anti-corrosion property of novolac vinyl ester coatings on mild steel through introduction of fluoric acrylic monomer and β-Si3N4 nanoparticles,” Colloids Surf A Physicochem Eng Asp, vol. 635, p. 128075, 2022, doi: https://doi.org/10.1016/j.colsurfa.2021.128075.

E. Khamme, A. Sakulkalavek, and R. Sakdanuphab, “Anti-corrosion performance of vinyl ester resin films with titanium dioxide and graphene hybrid reinforcement,” Mater Today Commun, vol. 33, p. 104888, 2022, doi: https://doi.org/10.1016/j.mtcomm.2022.104888.

L. Chen, X. Ni, Y. Shen, Z. Liu, and C. Liu, “Experimental and simulation investigation on hydrophobicity and corrosion resistance of graphene oxide reinforced composite coating,” Appl Surf Sci, vol. 648, p. 159072, 2024, doi: https://doi.org/10.1016/j.apsusc.2023.159072.

S. Zhang et al., “Tannic acid-modified g-C3N4 nanosheets/polydimethylsiloxane as a photothermal-responsive self-healing composite coating for smart corrosion protection,” Chemical Engineering Journal, vol. 483, p. 149232, 2024, doi: https://doi.org/10.1016/j.cej.2024.149232.

Z. Ma et al., “Effects of Zr-based and Ni-based amorphous alloy powders on the wear resistance and corrosion behavior of polyurethane composite coatings on aluminum alloys,” Colloids Surf A Physicochem Eng Asp, vol. 685, p. 133178, 2024, doi: https://doi.org/10.1016/j.colsurfa.2024.133178.

W. Pang et al., “Graphene oxides enhanced polyurethane based composite coating with long term corrosion resistance and self-healing property,” Eur Polym J, vol. 207, p. 112825, 2024, doi: https://doi.org/10.1016/j.eurpolymj.2024.112825.

V. Kumar, N. Kumar Arya, A. V Ullas, and G. Ji, “Coating of Epoxy resin and MMT Clay Nano-composite on Copper and Examination of their Corrosion behaviours in NaCl,” Mater Today Proc, 2023, doi: https://doi.org/10.1016/j.matpr.2023.02.172.

J. Wu, G. Ji, and Q. Wu, “Preparation of epoxy/ZrO2 composite coating on the Q235 surface by electrostatic spraying and its corrosion resistance in 3.5% NaCl solution,” RSC Adv, vol. 12, no. 17, pp. 10625–10633, 2022, doi: https://doi.org/10.1039/d2ra01220k.

Y. Lei et al., “Preparation of ZIF-67@DTMS NPs/Epoxy composite coating and its anti-corrosion performance for Q235 carbon steel in 3.5 wt% NaCl solution,” Colloids Surf A Physicochem Eng Asp, vol. 656, p. 130370, 2023, doi: https://doi.org/10.1016/j.colsurfa.2022.130370.

Z. He et al., “Self-healing epoxy composite coating based on polypyrrole@MOF nanoparticles for the long-efficiency corrosion protection on steels,” Colloids Surf A Physicochem Eng Asp, vol. 657, p. 130601, 2023, doi: https://doi.org/10.1016/j.colsurfa.2022.130601.

S. Duan et al., “Triton X-100 assisted composite of fluorinated graphene and ZIF-8 for epoxy coatings with high corrosion and wear resistance on carbon steel,” Prog Org Coat, vol. 171, p. 107047, 2022, doi: https://doi.org/10.1016/j.porgcoat.2022.107047.

L. Zhou et al., “Modified graphene oxide/waterborne epoxy composite coating with enhanced corrosion resistance,” Prog Org Coat, vol. 172, p. 107100, 2022, doi: https://doi.org/10.1016/j.porgcoat.2022.107100.

R. Zou et al., “High barrier and durable self-healing composite coating: Boron nitride combined with cyclodextrin for enhancing the corrosion protection properties of waterborne epoxy coating,” Colloids Surf A Physicochem Eng Asp, vol. 653, p. 129896, 2022, doi: https://doi.org/10.1016/j.colsurfa.2022.129896.

Copyright (c) 2024 Hafiz Aulia, Rini Riastuti, Rizal Tresna Ramdhani
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.