Comparative Studies Simulation Software for Bone Plate Compression

Dita Mayasari, Sirojuddin Kholil Muhammad, Joko Triwardono, Daniel Panghihutan Malau, Muhammad Satrio Utomo, Talitha Asmaria

Abstract

Medical applications occasionally require PSI (patient-specific implant) designs to match the implant bone’s geometry. To verify and predict failures of the design as well as a treatment before the manufacturing process, FEA (finite element analysis) is employed to simulate when given a specific number of loads. Plenty of studies have done the FEA using a couple of types of software; however, to the best of our knowledge, there is no literature to compare those several FEA results with a comparable experiment. This study further analyzes material stress, particularly to compute the VMS (Von Misses stress) of the Ti6Al4V bone plate. Furthermore, this study proposes to examine and deliver a comprehensive understanding using the four most used software of COMSOL, Ansys, Abaqus, and Autodesk Inventor. The results of those four simulations are then compared with the stress test through the Hardness Vickers test. This study will contribute significantly as a novel comparison between VMS and hardness test as a stress prediction in an implant material.  

Keywords

Finite element analysis; titanium alloy; bone implant; Von Misses stress

Full Text:

PDF

References

D. C. Ackland, D. Robinson, M. Redhead, P. V. S. Lee, A. Moskaljuk, and G. A. Dimitroulis, "Personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation," Journal of Mechanical Behavior of Biomedical Materials, vol. 69, pp. 404-411, 2017. Doi:10.1016/j.jmbbm.2017.01.048.

https://doi.org/10.1016/j.jmbbm.2017.01.048

A. A. Al-Tamimi, P. R. A. Fernandes, C. Peach, G. Cooper, C. Diver, and P. J. Bartolo, "Metallic bone fixation implants: a novel design approach for reducing the stress shielding phenomenon," Virtual and Physical Prototyping, vol. 12 no.2, pp.141-151, 2017. Doi:10.1080/17452759.2017.1307769.

https://doi.org/10.1080/17452759.2017.1307769

D. Wang, Y. Wang, S. Wu, H. Lin, Y. Yang, S. Fan, C. Gu, J. Wang, and C. Song, "Customized a Ti6Al4V bone plate for complex pelvic fracture by selective laser melting," Materials, vol. 10 no.1, pp. 35, 2017. Doi:10.3390/ma10010035.

https://doi.org/10.3390/ma10010035

J. Rueber, R. Koehler, "Techniques for generating bone plate design" United States Patent: US10,595,942 B2, 2020.

E. A. Lopez, K. Synder, "Variable angle bone plate" United States Patent: US10,624,686 B2, 2020.

R. J. Mobbs, M. Coughlan, R. Thompson, C. E. Sutterlin, and K. Phan, "The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: Case report," Journal of Neurosurgery, vol. 26, no.4, pp. 513-518, 2017. Doi:10.3171/2016.9.SPINE16371.

https://doi.org/10.3171/2016.9.SPINE16371

R. N. Maniar, and T. Singhi, "Patient specific implants: scope for the future," Current Reviews Musculoskeletal Medicine, vol. 7, no. 2, pp. 125-130, 2014. Doi:10.1007/s12178-014-9214-2.

https://doi.org/10.1007/s12178-014-9214-2

S. H. Abdullah, "Computational analysis for optimisation of baja SAE roll cage," International Journal for Scientific Research and Development, vol. 6 no. 4, pp. 1395-1399, 2018.

S. Zandi, and M. Razaghi, "Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification," Solar Energy, vol. 179. pp. 298-306, 2019. Doi:10.1016/j.solener.2018.12.032.

https://doi.org/10.1016/j.solener.2018.12.032

I. V. Antoniac, D. I. Stoia, B. Ghiban, C. Tecu, F. Miculescu, C. Vigaru, and V. Saceleanu, "Failure analysis of a humeral shaft locking compression plate-surface investigation and simulation by finite element method," Materials, vol. 12 no. 7, pp. 1128, 2019. Doi:10.3390/ma12071128.

https://doi.org/10.3390/ma12071128

D. P. Malau, M. S. Utomo, D. Annur, T. Asmaria, Y. Prabowo, A. J. Rahyussalim, S. Supriadi, and M. I. Amal, "Finite element analysis of porous stemmed hip prosthesis for children," AIP Conference Proceedings, no. 2193, 2019. Doi:10.1063/1.5139393.

https://doi.org/10.1063/1.5139393

G. S. Lewis, D. Mischler, H. Wee, J.S. Reid, and P. Varga, "Finite element analysis of fracture fixation," Current osteoporosis reports, vol. 19 no. 4, pp. 403-416, 2021. Doi:10.1007/s11914-021-00690-y.

https://doi.org/10.1007/s11914-021-00690-y

H. Wang, J. Liu, G. Wen, and Y. M. Xie, "The robust fail-safe topological designs based on the von Mises stress," Finite Element in Analys and Design, vol. 171, pp. 103376, 2020. Doi:10.1016/j.finel.2019.103376.

https://doi.org/10.1016/j.finel.2019.103376

F. A. Velázquez, R. C. Oyagüe, L. O. López, D. T. Lagares, A. M. González, A. P. Velasco, C. D. Lynch, J. G. Pérez, and M. S. Figallo, "Influence of bone quality on the mechanical interaction between implant and bone: A finite element analysis," Journal of Dentistry, vol. 88, pp. 103161, 2019. Doi:10.1016/j.jdent.2019.06.008.

https://doi.org/10.1016/j.jdent.2019.06.008

M. B. M. Salahuddin, A. F. Atikah, S. Rosnah, and M. N. M. Zuhair, "Conceptual design and finite element analysis of a high inclusion dough shaping machine using 3D-computer aided design (CAD) (solidworks)," Materialwissenschaft undWerkstoftechnik, vol. 50 no. 3, pp. 267-273, 2019. Doi:10.1002/mawe.201800205

https://doi.org/10.1002/mawe.201800205

Y.W. Kwon, and H. Bang, "The finite element method using MATLAB," CRC Press, pp. 10-40, 2018.

https://doi.org/10.1201/9781315275949

A. Muhammad, M. A. H. Ali, and I. H. Shanono, "Finite element analysis of a connecting rod in ANSYS: An overview," IOP Conference Series: Materials Science and Engineering, vol. 736 no. 2, pp. 022119, 2020. Doi:10.1088/1757-899X/736/2/022119.

https://doi.org/10.1088/1757-899X/736/2/022119

T. Jackson, A. Shenkin, A. Wellpott, K. Calders, N. Origo, M. Disney, A. Burt, P. Raumonen, B. Gardiner, M. Herold, T. Fourcaud, and Y. Malhi, "Finite element analysis of trees in the wind based on terrestrial laser scanning data," Agricultural and Forest Meteorology, vol. 265, pp. 137-144, 2019. Doi:10.1016/j.agrformet.2018.11.014

https://doi.org/10.1016/j.agrformet.2018.11.014

D. Annur, M. S. Utomo, T. Asmaria, D. P. Malau, S. Supriadi, B. Suharno, A. J, Rahyussalim, Y. Prabowo, and M. I. Amal, "Material selection based on finite Element method in customized iliac implant," Material Science Forum, vol. 1000, pp. 82-89, 2020. Doi:10.4028/www.scientific.net/MSF.1000.82.

https://doi.org/10.4028/www.scientific.net/MSF.1000.82

T. Asmaria, D. A. Mayasari, S. Ramdhani, M. S. Utomo, D. P. Malau, D. Annur, M. I. Amal, and I. Kartika, "Finite element analysis of patient specific bone plate with Ti6Al4V material selection," Jurnal Penelitian Fisika dan Aplikasinya, vol. 11, no.1, pp. 83-93, 2021. Doi:10.26740/jpfa.v11n1.p83-93

https://doi.org/10.26740/jpfa.v11n1.p83-93

P. Zhang, S. X. Li, and Z. F. Zhang, "General relationship between strength and hardness," Material Science and Engineering: A, vol. 529, pp. 62-73, 2011. Doi:10.1016/j.msea.2011.08.061.

https://doi.org/10.1016/j.msea.2011.08.061

J. Shen, T. Nagasaka, M. Tokitani, T. Muroga, R. Kasada, and S. Sakurai, "Effects of titanium concentration on microstructure and mechanical properties of high-purity vanadium alloys," Materials & Design, vol. 224, pp. 111390, 2022. Doi:10.1016/j.matdes.2022.111390

https://doi.org/10.1016/j.matdes.2022.111390

M. Dalstra, and R. Huiskes, "Load transfer across the pelvic bone," Journal of Biomechanics, vol. 28, no. 6, pp. 715-724, 1995. Doi:10.1016/0021-9290(94)00125-N.

https://doi.org/10.1016/0021-9290(94)00125-N

A. R. Pramana, P. Marcián, L. Borák, N. Narra, T. Forouzanfar, and J. Wolff, "Structural and mechanical implications of PMMA implant shape and interface geometry in cranioplasty - A finite element study," Journal of Cranio-Maxillofacial Surgery, vol. 44, no. 1, pp. 34-44, 2016. Doi:10.1016/j.jcms.2015.10.014

https://doi.org/10.1016/j.jcms.2015.10.014

S. Mobasseri, B. Karami, M. Sadeghi, and A. Tounsi, "Bending and torsial rigidities of defected femur bone using finite element method," Biomedical Engineering Advances, vol. 3, pp. 100028, 2022. Doi:10.1016/j.bea.2022.100028.

https://doi.org/10.1016/j.bea.2022.100028

Copyright (c) 2023 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.