Pengaruh Mo dan Ni terhadap Struktur Mikro dan Kekerasan Baja Tahan Karat Martensitik 13Cr [The Effect of Mo And Ni on The Microstructure and Mechanical Properties of 13Cr Martensitic Stainless Steels]

Efendi Mabruri

Abstract

Tulisan ini melaporkan pengaruh Mo dan Ni terhadap struktur mikro dan kekerasan baja tahan karat martensitik 13 Cr dengan kondisi temperisasi pada 625oC. Pengamatan struktur mikro dilakukan menggunakan  mikroskop optik, SEM-EDS dan uji kekerasan dengan Rockwell C. Penambahan Mo ke dalam baja tahan karat martensitik 13Cr meningkatkan kandungan fasa ferit delta di dalam struktur mikro dan menurunkan kekerasan baja yang bersangkutan. Sedangkan penambahan 3%Ni ke dalam baja tahan karat martensitik 13Cr  yang mengandung 3%Mo menurunkan kandungan fasa ferit delta di dalam struktur mikro dan meningkatkan kekerasan. Karbida logam yang terbentuk merupakan senyawa M23C6 dan penambahan 3%Mo menurunkan kandungan Cr di dalam karbida logam tersebut akibat substitusi parsial Cr oleh Mo.

 

Abstract

The 13Cr martensitic stainless steels have been widely used for turbine blade materials in steam turbine
system due to high strength, high toughness and good corrosion resistance.This paper reports the effect of Mo
and Ni on the microstructure and hardness of 13Cr martenstitic stainless steel in tempered condition at
625 °C. Optical microscope and SEM-EDS were used for microstructural observation and Rockwell C for
hardness testing. The addition of Mo into 13Cr martensitic stainless steel increased delta ferrite content in the
microstructure and decreased Rockwell C hardness. On the other hand, the addition of Ni into the steel
containing 3% Mo decreased delta ferrite content and increased the hardness. With respect to metal carbide,
EDS analysis confirmed the formation of M23C6 in the steels and Mo addition decreased Cr content in the
carbide due to partial substitution of Cr with Mo


Keywords

Baja tahan karat martensitik 13 kromium; Molibdenum; Nikel; Ferit delta; Karbida logam; 13 Cr martenstitic stainless steel; Molybdenum; Nickel; Delta ferrite; Metal carbide

References

Mukhopadhay NK, Chowdhury SG, Das G, Chattoraj I, Das SK, Bhattacharya DK. 1998. An investigation of the failure of low pressure steam turbine blades. Eng. Fail Anal, 5(3):181–93.

Das G, Chowdhury SG, Ray AK, Das SK, Bhattacharya DK. 2003. Turbine blade failure in a thermal power plant. Engng Fail Anal,10(1):85–91.

McCloskey, T., Dooley, R., McNaughton, W. 1999. Turbine Steam Path Damage:Theory and Practice,vol. 2:DamageMechanisms, EPRI,Palo Alto,CA.

Zhang, Y., Macdonald,M.U.,Engelhardt, G.R., Macdonald, D.D. 2012. Development of localized corrosion damage on low pressure turbine disks and blades:I.Passivity, Electrochimica Acta 69, 1–11.

Cuevas, A.C.,Rodriguez, JA.,Clemente, CM.,Rodríguez, J.M.,Mariaca, Y. 2014. Pitting Corrosion Damage for Prediction Useful Life of Geothermal Turbine Blade. American Journal of Mechanical Engineering, Vol. 2, No. 6, 164-168.

Schönbauer,B.M.,Tschegg,S.E.S,Perlega,A.,Salzman,R.N.,Rieger,N.F.,Zhou,S.,Turnbull, A., Gandy, D. 2014. Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios. International Journal of Fatigue 65, 33–43.

Maya, M. E., Luca, T. P.,Saintiera,N.,Devos,O. 2013. Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3, International Journal of Fatigue 47 ,330–339.

Ball. A., Hoffman, J.P. 1981. Microstructure and properties of a steel containing 12% chromium, Met. Tech., 8, 329-338.

Lu, S.Y., Yao, K.F., Chen, Y.B., Wang, M.H., Liu, X., Ge, X. 2015. The effect of tempering temperature on the microstructure and electrochemical properties of a 13 wt.% Cr-type martensitic stainless steel, Electrochimica Acta 165, 45–55.

Singh, S., Nanda, T., 2013. Effect of Alloying and Heat Treatment on the Properties of Super Martensitic Stainless Steels, International Journal of Engineering Technology and Scientific Research , Volume 1 Issue 1.

Chenna K.S., Gangwar, N.K., Jha, A.K., Pant, B., George, K.M. 2015. Microstructure and Properties of 15Cr‐5Ni‐1Mo‐1W Martensitic Stainless Steel, steel research int. 86 , No. 1, 51-57.

Fan, R., Gao, M., Ma, Y., Zha, X., Hao, X., Liu, K. 2012. Effects of Heat Treatment and Nitrogen on Microstructureand Mechanical Properties of 1Cr12NiMo, J. Mater. Sci. Technol. , 28(11), 1059–1066.

Kumara, B. R., Sharma, S., Munda, P., Minz. R.K. 2013. Structure and microstructure evolution of a ternary Fe–Cr–Ni alloy akin to super martensitic stainless steel, Materials and Design 50,392–398.

Mabruri, E., Anwar, M.S.,Prifiharni,S.,Romijarso,T.B.,Adjiantoro, B. 6-7 October 2015. Tensile Properties of the Modified 13Cr Martensitic Stainless Steels , International Conference on Advanced Material Science and Technology.

Calliari, I., Zanesco, M., Dabala, M., Brunelli, K., Ramous, E. 2008. Investigation of Microstructure and Properties of a Ni-Mo Martensitic Stainless Steel, Materials and Design 29, 246–250.

Toroa, A., Misiolek, W.Z., Tschiptschin, A.P. 2003.Correlations between microstructure and surface properties in a high nitrogen martensitic stainless steel, Acta Materialia 51, 3363–3374.

Thursdiyanto, V.,Bae, E.J.,.Baek, E.R. 2008. Effect of Ni Contents on the Microstructure and Mechanical Properties of Martensitic Stainless Steel Guide Roll by Centrifugal Casting J. Mater. Sci. Technol., 24 (3) 343-346.

Cardoso, P.H.S.,Kwietniewski, C., Porto, J.P., Reguly, A. , Strohaecker, T.R. 2003. The influence of delta ferrite in the AISI 416 stainless steel hot workability, Materials Science and Engineering A351, 1-8.

Wang, P., Lu, S.P., Xiao, N.M., Li, D.Z., Li, Y.Y. 2010. Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel, Materials Science and Engineering A 527, 3210–3216.

Zhang, S., Wang, P., Li, D.Z., Li, Y.Y. 2015. Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering, Materials and Design 84, 385–394.

Barlow, L.D., Toit, M.D. 2012. Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI 420, Journal of Materials Engineering and Performance, Volume 21(7) 1327.

Balan KP, Venugopal, R.A, Sarma, D.S. 1998. Austenite precipitation during tempering in 16Cr–2Ni martensitic stainless steels. Scripta Mater 39, 901-905.

Copyright (c) 2016 Majalah Metalurgi

Refbacks

  • There are currently no refbacks.