The Effect of pH and Sodium Silicate Dosage on the Separation of Magnesium and Lithium from Artificial Brine Water Using Chemical Precipitation Techniques

Latifa Hanum Lalasari, Eko Sulistiyono, Sri Harjanto, Januar Irawan, Florentinus Firdiyono, Tri Arini, Lia Andriyah, Ariyo Suharyanto, Nadia Chrisayu Natasha, Fariza Eka Yunita

Abstract

This study aims to report the findings of an investigation into the separation of lithium and magnesium ions in the artificial brine water. The artificial brine water contains concentrations of magnesium, calcium, and lithium cations that closely resemble the concentrations seen in natural brine water sourced from Gunung Panjang using magnesium chloride, calcium chloride, and lithium chloride p.a. The objective of this experiment was to investigate the impact of pH and the addition of sodium silicate on the separation of magnesium and calcium ions from lithium ions in artificial brine water. The best outcomes were achieved when the pH of the brine water was set at 10, and sodium silicate was added in a stoichiometric ratio of 219%. These parameters led to a lithium content of 90.06%, magnesium removal of  70.32%, and a Mg/Li ratio of 6.29, indicating a substantial presence of magnesium ions precipitated as solids with pyroxene (MgSiO3) phase. This research also succeeded in increasing the lithium content by 94.28% and reducing the Mg/Li ratio to 4.96 after the precipitated solids were subjected to a water-leaching process.

Keywords

Separation; magnesium ion; lithium-ion; sodium silicate; artificial brine water

Full Text:

PDF

References

J. F. Peters, M. Baumann, B. Zimmermann, J. Braun, and M. Weil, "The environmental impact of Li-Ion batteries and the role of key parameters - A review," Renew. Sustain. Energy Rev., vol. 67, pp. 491-506, 2017. Doi: 10.1016/j.rser.2016.08.039.

https://doi.org/10.1016/j.rser.2016.08.039

C. Yang, P. Li, J. Yu, L. Da Zhao, and L. Kong, "Approaching energy-dense and cost-effective lithium-sulfur batteries: From materials chemistry and price considerations," Energy, vol. 201, pp. 117718, 2020. Doi: 10.1016/j.energy.2020.117718.

https://doi.org/10.1016/j.energy.2020.117718

B. W. Jaskula, "Mineral commodity summaries, Lithium," U.S. Geol. Surv., no. 703, pp. 100-101, 2016.

H. Vikström, S. Davidsson, and M. Höök, "Lithium availability and future production outlooks," Appl. Energy, vol. 110, pp. 252-266, 2013. Doi: 10.1016/j.apenergy.2013.04.005.

https://doi.org/10.1016/j.apenergy.2013.04.005

A. P. Saputry, T. Lestariningsih, and Y. Astuti, "Jurnal Kimia Sains dan Aplikasi Journal of Scientific and Applied Chemistry /=/jurnal Kimia Pengaruh Rasio LiB0B:Ti02 dari Lembaran Polimer Elektrolit sebagai Pemisah terhadap Kinerja Elektrokimia Baterai Lithium-Ion Berbasis LTO Title: The Effect of Rati," J. Kim. Sains dan Apl., vol. 22, no. 4, pp. 136-142, 2019.

https://doi.org/10.14710/jksa.22.4.136-142

T. Lestariningsih, Q. Sabrina, C. R. Ratri, A. Subhan, and S. Priyono, "The effect of LiBOB addition on solid polymer electrolyte (SPE) production based PVDF-HFP/TiO2/LiTFSI on ionic conductivity for Lithium-ion battery applications," J. Kim. Sains dan Apl., vol. 25, no. 1, pp. 13-19, 2022. Doi: 10.14710/jksa.25.1.13-19.

https://doi.org/10.14710/jksa.25.1.13-19

G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu, "The lithium-ion battery: State of the art and future perspectives," Renew. Sustain. Energy Rev., vol. 89, no. April 2017, pp. 292-308, 2018. Doi: 10.1016/j.rser.2018.03.002.

https://doi.org/10.1016/j.rser.2018.03.002

M. Rohmah, A. Suharyanto, L. H. Lalasari, and J. W. Soedarsono, "Effectiveness and isotherm models of lewatit monoplus S-108 on Lithium adsorption process from Bledug Kuwu brine with continuous flow," J. Kim. Sains dan Apl., vol. 24, no. 7, pp. 236-243, 2021. Doi: 10.14710/jksa.24.7.236-243.

https://doi.org/10.14710/jksa.24.7.236-243

Y. Zhang, L. Wang, W. Sun, Y. Hu, and H. Tang, "Membrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: A comprehensive review," J. Ind. Eng. Chem., vol. 81, pp. 7-23, 2020. Doi: 10.1016/j.jiec.2019.09.002.

https://doi.org/10.1016/j.jiec.2019.09.002

L. Zhang, L. Li, D. Shi, J. Li, X. Peng, and F. Nie, "Selective extraction of lithium from alkaline brine using HBTA-TOPO synergistic extraction system," Sep. Purif. Technol., vol. 188, pp. 167-173, 2017. Doi: 10.1016/j.seppur.2017.07.028.

https://doi.org/10.1016/j.seppur.2017.07.028

Y. Zhang, Y. Hu, L. Wang, and W. Sun, "Systematic review of lithium extraction from salt-lake brines via precipitation approaches," Miner. Eng., vol. 139, no. July, pp. 105868, 2019. Doi: 10.1016/j.mineng.2019.105868.

https://doi.org/10.1016/j.mineng.2019.105868

X. Liu, M. Zhong, X. Chen, and Z. Zhao, "Separating lithium and magnesium in brine by aluminum-based materials," Hydrometallurgy, vol. 176, 2017, pp. 73-77, 2018. Doi: 10.1016/j.hydromet.2018.01.005.

https://doi.org/10.1016/j.hydromet.2018.01.005

L. He, W. Xu, Y. Song, X. Liu, and Z. Zhao, "Selective removal of magnesium from a lithium-concentrated anolyte by magnesium ammonium phosphate precipitation," Sep. Purif. Technol., vol. 187, pp. 214-220, 2017. Doi: 10.1016/j.seppur.2017.04.028.

https://doi.org/10.1016/j.seppur.2017.04.028

K. Ooi, A. Sonoda, Y. Makita, R. Chitrakar, Y. Tasaki-Handa, and T. Nakazato, "Recovery of lithium from salt-brine eluates by direct crystallization as lithium sulfate," Hydrometallurgy, vol. 174, no. September, pp. 123-130, 2017. Doi: 10.1016/j.hydromet.2017.10.007.

https://doi.org/10.1016/j.hydromet.2017.10.007

F. Firdiyono, , L.H. Lalasari, E.Tarmizi, E. Sulistiyono, L. Andriyah, T Arini, N. Natasha, and F. E. Yunita, "The degree of Lithium (Li) Stability Compared to Calcium (Ca) and Magnesium (Mg) from low Lithium grade brine water with addition of limestone and oxalic acid," IOP Conf. Ser. Mater. Sci. Eng., vol. 858, no. 1, 2020. Doi: 10.1088/1757-899X/858/1/012044.

https://doi.org/10.1088/1757-899X/858/1/012044

E. Sulistiyono, L. H. Lalasari, W. Mayangsari, and A.B. Prasetyo, "Study of Lithium extraction from brine water, Bledug Kuwu, Indonesia by the precipitation series of oxalic acid and carbonate sodium," in Proceedings of the International Seminar on Metallurgy and Materials (ISMM 2017), AIP Conference Proceedings, vol. 010001, no. 1964, pp. 1-6, 2018. Doi: 10.1063/1.5038289.

https://doi.org/10.1063/1.5038289

L. H. Lalasari, M. K. Widowati, N. C. Natasha, E. Sulistiyono, and A. B. Prasetyo, "The synthesis of calcium salt from brine water by partial evaporation and chemical precipitation," IOP Conf. Ser. Mater. Sci. Eng., no. 176, pp. 1-9, 2017. Doi: 10.1088/1757-899X/176/1/012040.

https://doi.org/10.1088/1757-899X/176/1/012040

Y. Zhang, Y. Hu, N. Sun, S. A. Khoso, L. Wang, and W. Sun, "A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine," Hydrometallurgy, vol. 187, no. April, pp. 125-133, 2019. Doi: 10.1016/j.hydromet.2019.05.019.

https://doi.org/10.1016/j.hydromet.2019.05.019

E. Sulistiyono, S. Harjanto, and L. H. Lalasari, "Separation of magnesium and lithium from brine water and bittern using sodium silicate precipitation agent," Resources, vol. 11, no. 10, pp. 1-12, 2022. Doi: 10.3390/resources11100089.

https://doi.org/10.3390/resources11100089

E. Sulistiyono, S. Harjanto, and L. H. Lalasari, "Extraction of magnesium from salt pond waste with low lithium grade using sodium silicate reagent," IOP Conf. Ser. Mater. Sci. Eng., vol. 1195, no. 1, p. 012028, 2021. Doi: 10.1088/1757-899x/1195/1/012028.

https://doi.org/10.1088/1757-899X/1195/1/012028

E. Sulistiyono, S. Harjanto, L. H. Lalasari; F. Firdiyono, N. C. Natasha, Y. Dewayani, "Effectiveness of the separation of Magnesium and Lithium from seawater with sodium silicate precipitation process," Metalurgi, vol. 37, no. 1, pp. 21-30, 2022.

https://doi.org/10.14203/metalurgi.v37i1.640

H. J. Yang, Q. H. Li, B. Li, F. Q. Guo, Q. F. Meng, and W. Li, "Optimization of operation conditions for extracting lithium ions from calcium chloride-type oil field brine," Int. J. Miner. Metall. Mater., vol. 19, no. 4, pp. 290-294, 2012. Doi: 10.1007/s12613-012-0553-y.

https://doi.org/10.1007/s12613-012-0553-y

D. Zeng, H. Liu, and Q. Chen, "Simulation and prediction of solubility phase diagram for the separation of MgCl2 from LiCl brine using HCl as a salting-out agent," Hydrometallurgy, vol. 89, no. 1-2, pp. 21-31, 2007. Doi: 10.1016/j.hydromet.2007.05.001.

https://doi.org/10.1016/j.hydromet.2007.05.001

D. D. Stojanovi and V. J. Vajgand, "Studies of the m~banism of formation of calcium silicate compounds by titration based on emission and atomic absorption spectroscopy," 1953.

M. A. Ponka, D. N. Sahdaranr, D. T. Kurniadi, D. A. Yoga, F. M. H. Sihombing, and Supriyanto, "Hydrogeochemical model of Ciseeng geothermal field, Bogor, West Java," IOP Conf. Ser. Earth Environ. Sci., vol. 538, no. 1, 2020. Doi: 10.1088/1755-1315/538/1/012029.

https://doi.org/10.1088/1755-1315/538/1/012029

D. T. Kurniadi, D. N. Sahdarani, M. A. Ponka, D. A. Yoga, F. M. H. Sihombing, and Supriyanto, "Mineralogy of travertine deposit in Ciseeng geothermal field, Parung, West Java, Indonesia," J. Phys. Conf. Ser., vol. 1725, no. 1, 2021. Doi: 10.1088/1742-6596/1725/1/012076.

https://doi.org/10.1088/1742-6596/1725/1/012076

E. Febriana, U. Manurung, A. Prasetyo, M. Handayani, E. Muslih, F. Nugroho, E. Sulistiyono, and F. Firdiyono, "Dissolution of quartz sand in sodium hydroxide solution for producing amorphous precipitated silica," IOP Conf. Ser. Mater. Sci. Eng., vol. 858, no. 1, 2020. Doi: 10.1088/1757-899X/858/1/012047.

https://doi.org/10.1088/1757-899X/858/1/012047

F. E. Yunita, N. C. Natasha, E. Sulistiyono, A. R. Rhamdani, A. Hadinata, and E. Yustanti, "Time and amplitude effect on nano magnesium oxide synthesis from bittern using sonochemical Process," IOP Conf. Ser. Mater. Sci. Eng., vol. 858, p. 012045, 2020.

https://doi.org/10.1088/1757-899X/858/1/012045

Copyright (c) 2023 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.