EFFECT OF HOT ROLLING AND SOLUTION TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FE-MN-SI-CR-NI SHAPE MEMORY ALLOY

Miftakhur - Rohmah, Emmanoela Carissa Sendouw, Rifqi Aulia Tanjung, Dedi Pria Utama, Efendi Mabruri

Abstract

Fe-14Mn-4Si-8Ni-11Cr SMA (shape memory alloy) was designed as a smart material because of its specific properties, which can memorize the original shape, so it has the potential to dampen vibration in seismic structures. Memory effect is triggered by SIM (stress-induced martensitic) transformation from γ-austenite to ε-martensite (hexagonal close-packed / HCP) structure, and it is recovered by heating after unloading. This study investigated the effect of hot rolling and solution treatment on the microstructure and its relationship with hardness and SME (shape memory effect) properties. The as cast of Fe-14Mn-4Si-8Ni-11Cr was hot rolled (900 and 1000 ℃) and solution treated (1000 and 1100 ℃). After the thermomechanical process, all microstructures consist of γ-FCC (face-centered cubic), the annealing twins, and a fine band of ε-martensite. The grain size of the γ-phase is 29.43, 41.96, 42.44, and 45.57 μm for samples B, C, D, and E, respectively. The higher the temperature of hot rolling and solution treatment applied, the larger the grain size obtained, indirectly reducing the hardness to 299.93 BHN and 286.52 BHN for samples D and E. The coarsened austenite grain, a lower number of annealing twins, and the pre-existing line band of ε-martensite are favorable to obtain the enormous recovery strain, up to 8.26% for sample E.

Keywords

Fe-Mn-Si-Ni-Cr; SMA (Shape Memory Alloy); SME (Shape Memory Effect); strain recovery

Full Text:

PDF

References

J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des., vol. 56, no. April, pp. 1078-1113, 2014. Doi: 10.1016/j.matdes.2013.11.084.

A. Tabrizikahou, M. Kuczma, M. L. Plura, E. N. Pursangi, M. Noori, P. Gardoni and S. Li, “Application and modelling of shape-memory alloys for structural vibration control: State-of-the-art review,” Constr. Build. Mater., vol. 342, no. PB, pp. 127975, 2022. Doi: 10.1016/j.conbuildmat.2022.127975.

H. Peng, J. Chen, Y. Wang, and Y. Wen, “Key factors achieving large recovery srains in polycrystalline Fe–Mn–Si-based shape memory alloys: A review,” Adv. Eng. Mater., vol. 20, no. 3, pp. 1-18, 2018. Doi: 10.1002/adem.201700741.

M. K. El Fawkhry, “The effect of solution treatment temperature on SIEM and shape recovery of Fe-Mn-Si shape memory alloy,” J. Mater. Res. Technol., vol. 15, pp. 1069-1075, 2021. Doi: 10.1016/j.jmrt.2021.08.009.

X. Min, T. Sawaguchi, X. Zhang, and K. Tsuzaki, “Reasons for incomplete shape recovery in polycrystalline Fe-Mn-Si shape memory alloys,” Scr. Mater., vol. 67, no. 1, pp. 37-40, 2012. Doi: 10.1016/j.scriptamat.2012.03.015.

Y. Yang, C. Leinenbach, and M. Shahverdi, “Simulation and experimental characterization of VC precipitation and recovery stress formation in an FeMnSi-based shape memory alloy,” J. Alloys Compd., vol. 940, pp. 168856, 2023. Doi: 10.1016/j.jallcom.2023.168856.

C. Zhang, F. Song, S. Wang, H. Peng, and Y. Wen, “Effect mechanism of Mn contents on shape memory of Fe-Mn-Si-Cr-Ni alloys,” Jinshu Xuebao/Acta Metall. Sin., vol. 51, no. 2, pp. 201-208, 2015. Doi: 10.11900/0412.1961.2014.00394.

I. Esquivel, M. F. Giordana, and A. V. Druker, “Effect of heat treatment on the microstructure and shape memory behaviour of Fe-Mn-Si-Ni-Cr alloys,” Mater. Charact., vol. 155, pp. 109811, 2019. Doi: 10.1016/j.matchar.2019.109811.

S. Choi, E. Choi, and W. J. Kim, “Austenite grain size effect on recovery stress and recovery strain of Fe-Mn-Si-Cr-Ni-0.01C alloy severely plastically deformed by differential speed rolling,” Mater. Charact., vol. 175, pp. 111097, 2021. Doi: 10.1016/j.matchar.2021.111097.

M. Mohri, I. Ferretto, C. Leinenbach, D. Kim, D. G. Lignos, and E. Ghafoori, “Effect of thermomechanical treatment and microstructure on pseudo-elastic behavior of Fe-Mn-Si-Cr-Ni-(V, C) shape memory alloy,” Mater. Sci. Eng. A, vol. 855, pp. 143917, 2022. Doi: 10.1016/j.msea.2022.143917.

H. Peng, Y. Wen, Y. Du, Q. Yu, and Q. Yang, “Effect of manganese on microstructures and solidification modes of cast Fe-Mn-Si-Cr-Ni shape memory alloys,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 44, no. 5, pp. 1137-1143, 2013. Doi: 10.1007/s11663-013-9880-2.

O. Matsumura, T. Sumi, N. Tamura, K. Sakao, T. Furukawa, and H. Otsuka, “Pseudoelasticity in an Fe-28Mn-6Si-5Cr shape memory alloy,” Mater. Sci. Eng. A, vol. 279, no. 1-2, pp. 201-206, 2000. Doi: 10.1016/s0921-5093(99)00644-9.

S. Y. Jiang, Y. Wang, X. D. Xing, and Y. Q. Zhang, “Stress-induced martensite phase transformation of FeMnSiCrNi shape memory alloy subjected to mechanical vibrating polishing,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 30, no. 6, pp. 1582-1593, 2020. Doi: 10.1016/S1003-6326(20)65321-3.

M. M. Pan, X. M. Zhang, D. Zhou, R. D. K. Misra, and P. Chen, “Fe-Mn-Si-Cr-Ni based shape memory alloy: Thermal and stress-induced martensite,” Mater. Sci. Eng. A, vol. 797, pp. 140107, 2020. Doi: 10.1016/j.msea.2020.140107.

L. Yong, Q. Luo, H. Peng, J. Yan, B. Xu, and Y. Wen, “Dependence of shape memory effect on austenitic grain sizes in thermo-mechanical treated Fe-Mn-Si-Cr-Ni shape memory alloys,” Mater. Charact., vol. 169, pp. 110650, 2020. Doi: 10.1016/j.matchar.2020.110650.

N. Bozzolo and M. Bernacki, “Viewpoint on the formation and evolution of annealing twins during thermomechanical processing of FCC metals and alloys,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 51, no. 6, pp. 2665-2684, 2020. Doi: 10.1007/s11661-020-05772-7.

K. W. Park, E. Choi, and W. J. Kim, “Grain size effect on the recovery stress and strain of a Fe–Mn–Si shape memory alloy in a wide range of grain sizes,” Mater. Sci. Eng. A, vol. 856, pp. 143947, 2022. Doi: 10.1016/j.msea.2022.143947.

Y. Chen, A. Li, Z. Ma, G. Kang, D. Jiang, K. Zhao, Y. Ren, L. Cui, K. Yu, “Revealing the mode and strain of reversible twinning in B19′ martensite by in situ synchrotron x-ray diffraction,” Acta Mater., vol. 236, p. 118131, 2022. Doi: 10.1016/j.actamat.2022.118131.

P. Chowdhury, “Frontiers of theoretical research on shape memory alloys: A general overview,” Shape Mem. Superelasticity, vol. 4, no. 1, pp. 26-40, 2018. Doi: 10.1007/s40830-018-0161-4.

L. La Rosa and F. Maresca, “On the impact of lattice parameter accuracy of atomistic simulations on the microstructure of Ni-Ti shape memory alloys,” Model. Simul. Mater. Sci. Eng., vol. 30, no. 1, 2022. Doi: 10.1088/1361-651X/ac3b9e.

K. Renard and P. J. Jacques, “On the relationship between work hardening and twinning rate in TWIP steels,” Mater. Sci. Eng. A, vol. 542, pp. 8-14, 2012. Doi: 10.1016/j.msea.2012.01.123.

H. Peng, L. Yong, S. Wang, and Y. Wen, “Role of annealing in improving shape memory effect of as-cast Fe-Mn-Si-Cr-Ni shape memory alloys,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 50, no. 7, pp. 3070-3079, 2019. Doi: 10.1007/s11661-019-05233-w.

Copyright (c) 2023 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.