Characterization and Analysis of Hardness, Microstructure, and Crystallography of SS 304-Sheathed MgB2 Superconducting Wires

Rizky Ramadhani Rivai, Andika Widya Pramono, Tri Hardi Priyanto, Awan Maghfirah

Abstract

This research was conducted to analyze the hardness, microstructural morphology, and crystallography of the MgB2 compound in the form of a SS 304-sheathed superconducting wire. MgB2 superconducting wire with SS 304 outer sheath was manufactured using an ex-situ rolling process. The results of the Vickers hardness test with a load of 0.3 N showed the MgB2 hardness value of 355.1 HV. The results of observations with SEM-EDS (scanning electron microscopy-energy dispersive spectroscopy) showed the agglomerations of the second phase of (Mg)B-O with various compositions due to the rolling process. There was also a longitudinal crack in the MgB2 area due to the work-hardening phenomenon in the brittle MgB2 solid. There were no obvious Bragg peaks in the MgB2 phase. The detected Bragg peaks came from the austenitic (g-Fe) of SS 304-sheath.   

Keywords

magnesium diboride; agglomeration; FCD/TD; crystallographic texture; neutron absorption

Full Text:

PDF

References

N. Nurmalita, N. Amani, and F. Fauzi, “XRD analysis of Bi-2212 superconductors prepared by the self-flux method,” Jurnal Natural, vol. 13, no. 1, pp. 23–27, 2013.

Y. P. Sun et al., “Superconductivity at 49 K in copper doping magnesium diboride,” Mar. 2001.

S. Choi et al., “Evaluation and control of residual amorphous phases in carbon-doped MgB2 superconductors,” J Alloys Compd, vol. 864, p. 158867, May 2021, doi: 10.1016/j.jallcom.2021.158867.

S. Herbirowo et al., “Pengaruh doping nikel dan suhu sinter pada pembuatan kawat superkonduktor magnesium diborida,” Indonesian Journal of Applied Physics, vol. 10, no. 2, pp. 116–125, 2020.

M. Melone, M. Moran, F. Malamud, M. T. Malachevsky, and A. Serquis, “Crystallographic texture study of nano-SiC-doped MgB2 wires,” IEEE Transactions on Applied Superconductivity, vol. 31, no. 5, pp. 1–5, Aug. 2021, doi: 10.1109/TASC.2021.3068088.

P. Kováč, T. Melišek, and I. Hušek, “Ic anisotropy of in situ made MgB2 tapes,” Supercond Sci Technol, vol. 18, no. 7, pp. L45–L48, Jul. 2005, doi: 10.1088/0953-2048/18/7/L02.

X. Song et al., “Anisotropic grain morphology, crystallographic texture and their implications for flux pinning mechanisms in MgB2 pellets, filaments and thin films,” Supercond Sci Technol, vol. 15, no. 4, pp. 511–518, Apr. 2002, doi: 10.1088/0953-2048/15/4/306.

S. Herbirowo, V. Puspasari, H. Nugraha, E. Sulistiyo, A. W. Pramono, and A. Imaduddin, “Fabrikasi kawat resistansi nol berbahan MgB2/stainless steel dengan variasi reduksi ukuran melalui pengerolan dingin terhadap karakteristik mekanik dan struktur mikro,” ENERGI & KELISTRIKAN, vol. 13, no. 2, pp. 242–249, Dec. 2021, doi: 10.33322/energi.v13i2.1491.

L. Perez-Gandarillas, A. Perez-Gago, A. Mazor, P. Kleinebudde, O. Lecoq, and A. Michrafy, “Effect of roll-compaction and milling conditions on granules and tablet properties,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 106, pp. 38–49, Sep. 2016, doi: 10.1016/j.ejpb.2016.05.020.

S. K. Chen, K. A. Yates, M. G. Blamire, and J. L. MacManus-Driscoll, “Strong influence of boron precursor powder on the critical current density of MgB2,” Supercond Sci Technol, vol. 18, no. 11, pp. 1473–1477, Nov. 2005, doi: 10.1088/0953-2048/18/11/011.

J. Mazur, “Lattice parameters of martensite and austenite,” Nature, vol. 166, no. 4228, pp. 828–828, Nov. 1950, doi: 10.1038/166828a0.

A. Jain et al., “Commentary: The materials project: a materials genome approach to accelerating materials innovation,” APL Mater, vol. 1, no. 1, p. 011002, Jul. 2013, doi: 10.1063/1.4812323.

S. Theeyab Faris, “Analysis of plane strain rolling rigid plastic materials using finite element method,” Diyala Journal of Engineering Sciences, vol. 8, no. 2, pp. 99–115, Jun. 2015, doi: 10.24237/djes.2015.08208.

A. Pramono and J. Bouffette, Pengantar tekstur kristalografi: teori dan aplikasi. LIPI Press, 2022. doi: 10.14203/press.393.

I. Hore-Lacy, “NUCLEAR POWER,” Nuclear Energy in the 21st Century, pp. 37–53, 2007, doi: 10.1016/B978-012373622-2/50006-4.

“Neutron Absorber - an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/earth-and-planetary-sciences/neutron-absorber (accessed Jan. 03, 2023).

S. Barth, “Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization mass spectrometry,” Chem Geol, vol. 143, no. 3–4, pp. 255–261, Dec. 1997, doi: 10.1016/S0009-2541(97)00107-1.

N. Soppera, M. Bossant, O. Cabellos, E. Dupont, and C. J. Díez, “JANIS: NEA JAva-based Nuclear Data Information System,” EPJ Web Conf, vol. 146, p. 07006, Sep. 2017, doi: 10.1051/epjconf/201714607006.

E. C. Auden et al., “Thermal neutron-induced single-event upsets in microcontrollers containing boron-10,” IEEE Trans Nucl Sci, vol. 67, no. 1, pp. 29–37, Jan. 2020, doi: 10.1109/TNS.2019.2951996.

Copyright (c) 2023 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.