The Addition of C, Zn-C, and Sn-C on Anatase Titanium Dioxide (TiO2) for Dye-Sensitized Solar Cells Application
Abstract
Keywords
Full Text:
PDFReferences
Shakeel Ahmad, M., Pandey, A. K., dan Abd Rahim, N. 2017. “Advancements in The Development of TiO2 Photoanodes and Its Fabrication Methods for Dye Sensitized Solar Cell (DSSC) Applications”. A review Renewable and Sustainable Energy Reviews, 77, pp. 89–108, doi:10.1016/j.rser.2017. 03. 129.
Zhuang, S., Lu, M., Zhou, N., Zhou, L., Lin, D., Peng, Z., dan Wu, Q. 2019. “Cu Modified ZnO Nanoflowers as Photoanode Material for Highly Efficient Dye Sensitized Solar Cells”. Electrochimica Acta, 294, pp. 28–37, doi:10.1016/j.electacta.2018.10.045.
Khan, M., Al-Mamun, M.R., Halder, P.K., dan Aziz, M. A. 2017. “Performance improvement of modified dye-sensitized solar cells”. Renewable and Sustainable Energy Reviews, 71, pp. 602–617, doi:10.1016/j.rser.2016.12.087.
Ganesh, R.S., Silambarasan, K., Durgadevi, E., Navaneethan, M., Ponnusamy, S., Kong, C.Y., Muthamizhchelvan, C., Shimura, Y., dan Hayakawa, Y. 2019. “Metal
Sulfide Nanosheet–Nitrogen-Doped Graphene Hybrids as Low-cost Counter Electrodes for Dye-Sensitized Solar Cells”. Applied Surface Science, 480, pp. 177–185, doi:10.1016/j.apsusc.2019.02.251.
Ganesh, R.S., Navaneethan, M., Ponnusamy, S., Muthamizhchelvan, C., Kawasaki, S., Shimura, Y., dan Hayakawa, Y. 2018. “Enhanced Photon Collection of High Surface Area Carbonate-doped Mesoporous TiO2 Nanospheres in Dye Sensitized Solar Cells”. Materials Research Bulletin, 101, pp.353-362, doi:10.1016/j.materresbull.2018. 01.018.
Zhou, L., Wei, L., Yang, Y., Xia, X., Wang, P., Yu, J., dan Luan, T. 2016. “Improved Performance of Dye Sensitized Solar Cells using Cu-doped TiO2 as Photoanode Materials : Band Edge Movement Study by Spectroelectrochemistry”. Chemical Physics, 475, pp. 1–8, doi: 10.1016/j.chemphys. 2016.05.018
Li, B., dan Tang, N. 2022. “Study on Zr, Sn, Pb, Si and Pt doped TiO2 Photoanode for Dye-sensitized Solar Cells : The First-Principles Calculations”. Chemical Physics Letters, 799, pp. 139636, doi: 10.1016 /j.cplett. 2022.139636.
Mehraz, S., Kongsong, P., Taleb, A., Dokhane, N., dan Sikong, L. 2019. “Large Scale and Facile Synthesis of Sn doped TiO2 Aggregates Using Hydrothermal Synthesis”. Solar Energy Materials and Solar Cells, 189, pp. 254-262, doi: 10.1016/j.solmat.2017. 06.048.
Paul, T.C., Podder, J., dan Babu, M.H. 2020. “Optical Constants and Dispersion Energy Parameters of Zn-doped TiO2 Thin Films Prepared by Spray Pyrolysis Technique”. Surfaces and Interfaces, 21, pp. 100725, doi: 10.1016/j.surfin.2020.100725
Nor, N.U., Mazalan, E., Risko, C., Crocker, M., dan Amin, N.A. 2022. “Unveiling The Structural, Electronic, and Optical Effects of Carbon-doping on Multi-layer Anatase TiO2 (1 0 1) and The Impact on Photocatalysis”. Applied Surface Science, 586, pp. 152641, doi:10.1016/j.apsusc.2022.152641.
Colombo, A., Dragonetti, C., Roberto, D., Ugo, R., Manfredi, N., Manca, P., Abbotto, A., Giustina, G.D., dan Brusatin, G. 2019. “A Carbon Doped Anatase TiO2 as A Promising Semiconducting Layer in Ru-dyes based Dye-sensitized Solar Cells”. Inorganica Chimica Acta, 489, pp. 263-268, doi: 10.1016/j.ica.2019.02.024.
Sadek, O., Touhtouh, S., Rkhis, M., Anoua, R., El Jouad, M., Belhora, F., dan Hajjaji, A. 2022. “Synthesis by Sol-gel Method and Characterization of Nano-TiO2 Powders”. Materialstoday : Proceedings, doi:10.1016/ j.matpr.2022.06.385.
Mehmood, U., Rahman, S. U., Harrabi, K., Hussein, I. A, dan Reddy, B. V.S. 2013. “Recent Advances in Dye sensitized Solar Cells”. Advances in Materials Science and Engineering, pp. 1-12, doi:10.1007/s00339-019-3116-5.
Javed, H.M., Adnan, M., Qureshi, A.A., Javed, S., Adeel, M., Shahid, M., dan Ahmad, M.I. 2022. “Morphological, Structural, Thermal and Optical Properties of Zn/Mg-doped TiO2 Nanostructures for Optoelectronics Applications”. Optics & Laser Technology, 146, pp. 107566, doi: 10.1016/j.optlastec.2021.107566.
Zhang, H., Wu, Z., Lin, R., dan Wang, Y. 2022. “Exploring The Mechanism of Room Temperature Ferromagnetism in C-doped TiO2 Nanoclusters by Tuning The Defects by Different Annealing Temperature using Citric Acid as C Source”. Ceramics International, doi: 10.1016/j.ceramint. 2022.05.385.
Bayan, E. M., Lupeiko, T. G., Pustovaya, L. E., Volkova, M. G., Butova, V. V., dan Guda, A.A. 2020. “Zn–F Co-doped TiO2 Nanomaterials: Synthesis, Structure and Photocatalytic Activity”. Journal of Alloys and Compounds, 822, pp. 153662, doi:10.1016/j.jallcom.2020.153662.
Mehraz, S., Kongsong, P., Taleb, A., Dokhane, N., dan Sikong, L. 2019. “Large Scale and Facile Synthesis of Sn doped TiO2 Aggregates Using Hydrothermal Synthesis”. Solar Energy Materials and Solar Cells, 189, pp. 254-262, doi: 10.1016/j.solmat.2017. 06.048.
Sadig, Aghazada., dan Nazeeruddin, M. K. 2018. “Ruthenium Complexes as Sensitizers in Dye Sensitized Solar Cells”. Inorganics, 6, pp. 1 – 34, doi:10.3390/inorganics6020052.
Shahzad, N., Lutfullah, Perveen, T., Pugliese, D., Haq, S., Fatima, N., dan Salman, S.M. 2022. “Counter Electrode Materials based on Carbon Nanotubes for Dye-sensitized Solar Cells”. Renewable and Suistanable Energy Reviews, 159, pp. 112196, doi: 10.1016/j.rser. 2022.112196.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.