MORPHOLOGY AND RESISTIVITY VALUE OF FLOURINE-DOPED TIN OXIDE (FTO) USING INDONESIAN LOCAL DIMETHYLTIN DICHLORIIDE (DTMC) PRECURSORS

Apti Mira Rizki, Fariza Eka Yunita, Latifa Hanum Lalasari, Januar Irawan, Tri Arini, Florentinus Firdiyono, Lia Andriyah, Nadia Chrisayu Natasha, Akhmad Herman Yuwono

Abstract

Transparent Conductive Oxide (TCO) is the main component for solar cell fabrication. One of the promising types of TCO is fluorine-doped tin oxide (FTO). The method used in depositing the conductive layer of FTO is spray pyrolysis with an ultrasonic nebulizer. The precursor is a local Indonesian product, dimethyl tin dichloride (DMTC), with doping ammonium fluoride (NH4F). The variable that used in this study were variations in deposition time (5. 10. 15. 20, and 25 minutes) with a fixed substrate temperature at 300°C and doping variations (un-doped, 2 wt.% doped and 8 wt.% doped) to see the effect of adding F doping to the precursor solution. The resistivity value with deposition time of 5. 10. 15. 20 and 25 minute (2 wt.% doped) is 0.218x100; 0.449x10-1; 1,567x10-2; 0.676x10-2 0.377x10-2 Ω.cm. For doping variations (un-doped, 2 wt% doped and 8 wt% doped) the value is 0.883x10-2; 0.377x10-2; 0.506x10-3 Ω.cm. There is a decreasing trend in the resistivity values obtained along with the increase in deposition time and the addition of doping to obtain better conductive properties. The grain size will increase with increasing deposition time and the addition of doping. The optimum resistivity value obtained in this study was 0.377x10-2 Ω.cm, obtained at the deposition time of 25 minutes with 2 wt.% doping.

Keywords

fluorine-doped tin oxide (FTO); dimethyltin dichloride (DMTC); deposition time; doping; resistivity

Full Text:

PDF

References

B. R. Koo, D. H. Oh, D. H. Riu, and H. J. Ahn, “Improvement of Transparent Conducting Performance on Oxygen-Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition,” ACS Appl. Mater. Interfaces, vol. 9, no. 51, pp. 44584–44592, 2017.

a. V. Moholkar, S. M. Pawar, K. Y. Rajpure, S. N. Almari, P. S. Patil, and C. H. Bhosale, “Solvent-dependent growth of sprayed FTO thin films with mat-like morphology,” Sol. Energy Mater. Sol. Cells, vol. 92, no. 11, pp. 1439–1444, Nov. 2008.

N. Memarian, S. M. Rozati, E. Elamurugu, and E. Fortunato, “Characterization of SnO2:F thin films deposited by an economic spray pyrolysis technique,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 7, no. 9, pp. 2277–2281, 2010.

Z. Ramdhan and A. Doyan, “Preliminary Study Flourine Tin Oxide ( FTO ) Using Sol-Gel Spin Coating Techniques,” vol. 10, no. 2, pp. 27–30, 2018.

H. Cho and Y. Yun, “Characterization of indium tin oxide ( ITO ) thin films prepared by a sol – gel spin coating process,” Ceram. Int., vol. 37, no. 2, pp. 615–619, 2011.

T. M. Hammad, N. K. Hejazy, G. Strip, and G. Branch, “Structural , Electrical and Optical Properties of ATO Thin Films Fabricated by Dip Coating Method,” Int. Nano Lett., vol. 1, no. 2, pp. 123–128, 2011.

Z. Y. Banyamin, P. J. Kelly, G. West, and J. Boardman, “Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering,” Coatings, vol. 4, pp. 732–746, 2014.

G. J. . Mannie, Surface chemistry and morphology of tin oxide thin films grown by chemical vapor deposition. Eindhoven University of Technology, The Netherlands, 2013.

T. Jäger, B. Bissig, M. Döbeli, A. N. Tiwari, and Y. E. Romanyuk, “Thin films of SnO2:F by reactive magnetron sputtering with rapid thermal post-annealing,” Thin Solid Films, 2014.

Y. Lin and C. Wu, “The properties of antimony-doped tin oxide thin films from the sol-gel process,” Surf. Coatings Technol., vol. 88, pp. 239–247, 1996.

L. Muliyadi, A. Doyan, S. Susilawati, and S. Hakim, “Synthesis of SnO2 Thin Layer with a Doping Fluorine by Sol-Gel Spin Coating Method,” J. Penelit. Pendidik. IPA, vol. 5, no. 2, p. 175, 2019.

Y. Ren, G. Zhao, and Y. Chen, “Fabrication of textured SnO2:F thin films by spray pyrolysis,” Appl. Surf. Sci., vol. 258, no. 2, pp. 914–918, 2011.

D. S. D. Amma, V. K. Vaidyan, and P. K. Manoj, “Structural, electrical and optical studies on chemically deposited tin oxide films from inorganic precursors,” Mater. Chem. Phys., vol. 93, no. 1, pp. 194–201, 2005.

D. Fikri, A. H. Yuwono, N. Sofyan, T. Arini, and L. H. Lalasari, “The Effect of Substrate Heating Temperature upon Spray Pyrolysis Process on the Morphological and Functional Properties of Fluorine Tin Oxide Conducting Glass,” AIP Conf. Proc. 1826, vol. 20003–1–0, 2017.

C. Luyo et al., “SnO2thin-films prepared by a spray-gel pyrolysis: Influence of sol properties on film morphologies,” Thin Solid Films, vol. 516, no. 1, pp. 25–33, 2007.

A. M. B. Van Mol, M. H. J. M. De Croon, C. I. M. A. Spee, and J. C. Schouten, “Kinetic mechanism of the decomposition of dimethyltin dichloride,” J. Phys. IV JP, vol. 9 I, no. 8, 1999.

A. Paraskevi and N. Munkegade, “Structural and sensing properties of nanocrystalline SnO2 films deposited by spray pyrolysis from a SnCl2 precursor,” Appl. Phys. A Mater. Sci. Process., vol. 91, pp. 667–670, 2008.

F. A. Garcés, N. Budini, R. R. Koropecki, and R. D. Arce, “Structural mosaicity and electrical properties of pyrolytic SnO2:F thin films,” Thin Solid Films, vol. 531, pp. 172–178, 2013.

T. Taniguchi and S. Ito, “Molecular Dynamics Simulation of the Structure of Soda-lime-silica Glass,” Reports res. Lab. Asahi Glas. Ltd, vol. 53, pp. 1–7, 2003.

L. H. Lalasari, T. Arini, A. H. Yuwono, and F. Firdiyono, “Pengaruh Pencampuran dan Rasio Dopan/Prekursor dalam Pembuatan Lapisan Tipis Fluorine Doped Tin Oxide (FTO) Berbasis Timah (II) Klorida,” pp. 105–114, 2015.

V. Bilgin, I. Akyuz, E. Ketenci, S. Kose, and F. Atay, “Electrical , structural and surface properties of fluorine doped tin oxide films,” Appl. Surf. Sci., vol. 256, no. 22, pp. 6586–6591, 2010.

R. Rinaldi, A. Amri, and Khairat, “Sintesa Fluorinated Tin Oxide (FTO) Menggunakan Prekursor Ramah Lingkungan dan Penambahan Graphene dengan Metode Deposisi Spray Coating Untuk Aplikasi Material Konduktif Transparan,” Jom FTEKNIK, vol. 3, no. 2, p. 10, 2016.

G. C. Morris and A. E. McElnea, “Fluorine doped tin oxide films from spray pyrolysis of stannous fluoride solutions,” Appl. Surf. Sci., vol. 92, pp. 167–170, 1996.

A. E. Hassanien et al., “Performance of Transparent Conducting Fluorine-doped Tin Oxide Films for Applications in Energy Efficient Devices Performance of Transparent Conducting Fluorine-doped Tin Oxide Films for Applications in Energy Efficient Devices,” Int. Journalof Thin Film. Sci. Technol., vol. 5, no. 1, pp. 55–65, 2016.

A. V Moholkar, S. M. Pawar, K. Y. Rajpure, P. S. Patil, and C. H. Bhosale, “Properties of highly oriented spray-deposited fluorine-doped tin oxide thin films on glass substrates of different thickness,” J. Phys. Chem. Solid, vol. 68, pp. 1981–1988, 2007.

T. Arini et al., “The Influence of Deposition Time and Substrate Temperature During the Spray Pyrolysis Process on The Electrical Resistivity and Optical Transmittance of 2 Wt% Fluorine-Doped Tin Oxide Conducting Glass,” Int. J. Technol., vol. 8, pp. 1335–1343, 2016.

P. Yao, “Effects of Sb doping level on the properties of Ti / SnO 2 -Sb electrodes prepared using ultrasonic spray pyrolysis,” vol. 267, pp. 170–174, 2011.

D. Tatar and B. Duzgun, “The relationship between the doping levels and some physical properties of SnO2:F thin films spray-deposited on optical glass,” J. Phys., vol. 79, no. 1, pp. 137–150, 2012.

S. N. Sadikin, M. Y. A. Rahman, A. A. Umar, and M. M. Salleh, “Effect of spin-coating cycle on the properties of TiO2 thin film and performance of DSSC,” Int. J. Electrochem. Sci., vol. 12, no. 6, pp. 5529–5538, 2017.

G. A. Velázquez-Nevárez, J. R. Vargas-García, L. Lartundo-Rojas, F. Chen, Q. Shen, and L. Zhang, “Preparation, characterization and electronic properties of fluorine-doped tin oxide films,” J. Wuhan Univ. Technol. Mater. Sci. Ed., vol. 31, no. 1, pp. 48–51, 2016.

M. Soliman, M. M. Hussein, S. El-atawy, and M. El-gamal, “Effect of fluorine doping and spraying technique on the properties of tin oxide films,” Renew. Energy, vol. 23, pp. 463–470, 2001.

Copyright (c) 2022 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.