A Preliminary Study of Cobalt Solvent Extraction from Nickel Sulphate Solution Using Organic Extractant-PC-88A

Rudi Subagja, Arief Dwi Rohman, Anistasia Milandia, Soesaptri Oediyani, Iwan Setiawan

Abstract

In present study, a solvent extraction experiment has been done to separate cobalt from the nickel sulfate solution by using 2-ethythexyl phosponic acid mono-2-ethylhexyl ester (PC-88A) as extractant. The experiment was carried out on a laboratory scale by using a separating funnel to extract cobalt from the nickel sulfate solution with PC88A. The mixed solution was shake in separating funnel for a specified period of time, and after the solvent extraction experiment was finished the organic phase PC88 was separated from the nickel sulfate solution by decantation. The nickel and cobalt content in the aqueous nickel sulfate solution were then analyzed using Atomic absorption spectrophotometry (AAS). In this experiment, the variable for  experiments were covering  solution pH from 2 to 6, shaking time from 30 minutes to 120 minutes, shaking speed  from 20 revolutions per minute (rpm) to 80 rpm, and the volumeratio  of aqueous to organic phase  (A:O ratio) was from 1:1  to 1:4. The effects that experimental variables to the cobalt extraction were observed in this experiment. The result of experiment at room temperature, solution pH 5, shaking speed  60 rpm,  shaking time  90 minutes,  A:O ratio  1:4 and  concentration of PC- 88A  40% show  97.21% of cobalt can be extracted by PC-88A from nickel sulfate solution, thererfore it was  necessary to conduct two stage extraction process  to extract 100% of the cobalt from the nickel sulfate solution.

 

Keywords

solvent extraction; nikel; cobalt; nickel sulphate; PC-88A

Full Text:

PDF

References

A. D. Dalvi, W. G. Bacon, and R. C. Osborne, “The past and the future of nickel laterites world’s land based nickel resources and primary nickel production,” PDAC 2004 Int. Conv., pp. 1-27, 2004.

A. Nieto, V. Montaruli, and M. Cardu, “The strategic importance of nickel: scenarios and perspectives aimed at global supply,” Trans. Soc. Min., Met. Explor, vol. 334, pp. 510-518, 2013.

M. Chandrashekar, and K. V. Sreenivasa Prasad, “The effect of cobalt on wear behavior of cemented carbide cutting tools for machining of titanium alloy,” Mater. Today Proc., vol. 5, no. 2, pp. 7678-7684, 2018. Doi:10.1016/j.matpr.2017.11.443.

J. M. Costa, M. B. Porto, R. J. Amancio, and A. F. A. Neto, “Effects of tungsten and cobalt concentration on microstructure and anticorrosive property of cobalt-tungsten alloys,” Surfaces and Interfaces, vol. 20, p. 100626, 2020. Doi:10.1016/j.surfin.2020.100626.

H. A. Zaman, S. Sharif, D. W. Kim, M. H. Idris, M. A. Suhaimi, and Z. Tumurkhuyag, “Machinability of cobalt-based and cobalt chromium molybdenum alloys-a review,” Procedia Manuf., vol. 11, pp. 563-570, 2017. Doi: 10.1016/j.promfg.2017.07.150.

E. White, E. Rinko, T. Prost, T. Horn, C. Ledford, C. Rock, and I. Anderson, “Processing of alnico magnets by additive manufacturing,” Appl. Sci., vol. 9, no. 22, 2019. Doi:10.3390/app9224843.

C. Demminger, C. Klose, and H. J. Maier, “Microstructure and magnetic properties of cobalt and zinc containing magnesium alloys,” Procedia Technol., vol. 26, pp. 35-42, 2016. Doi: 10.1016/j.protcy.2016.08.006.

X. Zhou, A. Huang, B. Cui, and J. W. Sutherland, “Techno-economic assessment of a novel SmCo permanent magnet manufacturing method,” Procedia CIRP, vol. 98, pp. 127-132, 2021. Doi: 10.1016/j.procir.2021.01.017.

X. Sun, H. Hao, Z. Liu, F. Zhao, and J. Song, “Tracing global cobalt flow: 1995-2015,” Resour. Conserv. Recycl., vol. 149, no. April, pp. 45-55, 2019. Doi: 10.1016/j.resconrec.2019.05.009.

A. C. Ghogia, A. Nzihou, P. Serp, K. Soulantica, and D. Pham Minh, “Cobalt catalysts on carbon-based materials for fischer-tropsch synthesis: a review,” Applied Catalysis A: General, vol. 609, no. 117906, 2021. Doi: 10.1016/j.apcata.2020.117906.

B. Tian, S. Mao, F. Guo, J. Bai, R. Shu, L. Qian, and Q. Liu, “Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming,” Energy, vol. 242, pp. 122970, 2022. Doi: 10.1016/j.energy.2021.122970.

A. C. M. Silva, M. C. D. Silva, P. K. Rohatgi, and R. A. Renzetti, “Cobalt (II) used as a catalyst to drying properties of healing agents for self-healing coatings,” Brazilian J. Dev., vol. 8, no. 2, pp. 9723-9740, 2022. Doi: 10.34117/bjdv8n2-085.

F. J. Anaissi, D. F. L. Horsth, J. Dalastra, J. O. Primo, K. W. Borth, M. L. M. Rocha, and N. Balaba, “Design, synthesis, and application of colored cobalt pigments (pink, blue, green),” J. Braz. Chem. Soc., vol. 31, no. 11, pp. 2265-2273, 2020. Doi:10.21577/0103-5053.20200078.

A. Campanile, B. Liguori, O. Marino, G. Cavaliere, V. L. De Bartolomeis, and D. Caputo, “Facile synthesis of nanostructured cobalt pigments by Co- A zeolite thermal conversion and its application in porcelain manufacture,” Sci. Rep., vol. 10, no. 1, pp. 1-9, 2020. Doi:10.1038/s41598-020-67282-1.

G. S. Seck, E. Hache, and C. Barnet, “Potential bottleneck in the energy transition: The case of cobalt in an accelerating electro-mobility world,” Resour. Policy, vol. 75, pp. 1-4, 2022. Doi:10.1016/j.resourpol.2021.102516.

R. V. Kumar, and A. P. Khandale, “A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells,” Renew. Sustain. Energy Rev., vol. 156, pp. 111985, 2022. Doi:10.1016/j.rser.2021.111985.

A. Aherwar, A. K. Singh, and A. Patnaik, “Cobalt based alloy: A better choice biomaterial for hip implants,” Trends Biomater. Artif. Organs, vol. 30, no. 1, pp. 50-55, 2016. Doi: 10.13140/RG.2.1.2501.5284.

K. Kulcsár, and J. Kónya, “The influence of heat treatment on the mechanical properties of 3D-printed cobalt-chrome alloy used in dental laboratory practice,” Acta Mater. Transilv., vol. 1, no. 2, pp. 97-100, 2019. Doi:10.2478/amt-2018-0036.

G. Herranz, C. Berges, J. A. Naranjo, C. García, and I. Garrido, “Mechanical performance, corrosion and tribological evaluation of a Co-Cr-Mo alloy processed by MIM for biomedical applications,” J. Mech. Behav. Biomed. Mater., vol. 105, pp. 103706, 2020. Doi: 10.1016/j.jmbbm.2020.103706.

A. Shokrani, V. Dhokia, and S. T. Newman, “Cryogenic high speed machining of cobalt chromium alloy,” Procedia CIRP, vol. 46, pp. 404-407, 2016. Doi:10.1016/j.procir.2016.04.045.

G. Manivasagam, D. Dhinasekaran, and A. Rajamanickam, “Biomedical implants: Corrosion and its prevention - A review,” Recent Patents Corros. Sci., vol. 2, no. 1, pp. 40-54, 2010. Doi:10.2174/1877610801002010040.

F. K. Crundwell, N. B. Preez, and B. D. H. Knights, “Production of cobalt from copper-cobalt ores on the african copperbelt-an overview,” Miner. Eng., vol. 156, pp. 106450, 2020. Doi: 10.1016/j.mineng.2020.106450.

P. A. Dias, D. Blagoeva, C. Pavel, and N. Arvanitidis, “Cobalt: demand-supply balances in the transition to electric mobility,” JRC Publication Repository, 2018. Doi:10.2760/97710.

Q. Dehaine, L. T. Tijsseling, H. J. Glass, T. Törmänen, and A. R. Butcher, “Geometallurgy of cobalt ores: A review,” Miner. Eng., vol. 160, 2021. Doi: 10.1016/j.mineng.2020.106656.

N. Mulaudzi, and M. H. Kotze, “Direct cobalt electrowinning as an alternative to intermediate cobalt mixed hydroxide product,” in The Southern African Institute of Mining and Metallurgy Base Metals Conference, pp. 209-222, 2013.

K. G. Fisher, “Cobalt processing developments,” in The Southern African Institute of Mining and Metallurgy 6th Southern African Base Metals Conference, pp. 237-258, 2011.

K. A. Karimov, A. V. Kritskii, L. G. Elfimova, and S. S. Naboichenko, “Low-temperature pressure leaching of converter matte in sulfuric acid solutions,” Metallurgist, vol. 61, no. 3-4, pp. 238-242, 2017. Doi:10.1007/s11015-017-0483-z.

Y. Huang, Z. Zhang, Y. Cao, G. Han, W. Peng, X. Zhu, T. Zhang and Z. Dou, “Overview of cobalt resources and comprehensive analysis of cobalt recovery from zinc plant purification residue-a review,” Hydrometallurgy, vol. 193, p. 105327, 2020. Doi: 10.1016/j.hydromet.2020.105327.

S. S. Afolabi, M. O. Zakariyah, M. H. Abedi, and W. Shafik, “A survey on cobalt metallurgical processes and its application,” J. Indian Chem. Soc., vol. 98, no. 11, 2021. Doi: 10.1016/j.jics.2021.100179.

J. Cheng, T. Lu, X. Wu, H. Zhang, C. Zhang, C. Peng, and S. Huang, “Extraction of cobalt(ii) by methyltrioctylammonium chloride in nickel(ii)-containing chloride solution from spent lithium ion batteries,” RSC Adv., vol. 9, no. 39, pp. 22729-22739, 2019. Doi:10.1039/c9ra02719j.

L. Brückner, J. Frank, and T. Elwert, “Industrial recycling of lithium-ion batteries-A critical review of metallurgical process routes,” Metals (Basel)., vol. 10, no. 8, pp. 1-29, 2020. Doi: 10.3390/met10081107.

R. Subagja, “Nickel extraction from nickel matte,” IOP Conf. Ser. Mater. Sci. Eng., vol. 285, no. 1, 2018. Doi: 10.1088/1757-899X/285/1/012001.

M. H. Morcali, L. T. Khajavi, S. Aktas, and D. B. Dreisinger, “Oxidative dissolution of nickel matte in dilute sulfuric acid solutions,” Hydrometallurgy, vol. 185, pp. 257-265, 2019. Doi: 10.1016/j.hydromet.2019.03.010.

R. Subagja, I. Setiawan, A. R. Rhamdani, and J. Irawan, “Effect of technological parameters on the electrowinning of cobalt from cobalt(II) chloride solutions,” Int. J. Electrochem. Sci., vol. 17, pp. 1-18, 2022. Doi:10.20964/2022.09.66.

B. Swain, H. W. Shim, and C. G. Lee, “Extraction/separations of cobalt by supported liquid membrane: A review,” Korean Chem. Eng. Res., vol. 57, no. 3, pp. 313-320, 2019. Doi: 10.9713/kcer.2019.57.3.313.

V. I. Francesco, and Veglio, “Separation of manganese, zinc and nickel from leaching solution of nickel-metal hydride spent batteries by solvent extraction”, Hydrometallurgy, vol. 129-130, pp. 50-58, 2012.

R. Subagja, “Pemisahan ion kobal dari larutan nikel klorida dengan cara solvent ekstraksi”, Teknologi Indonesia, vol. 34, no. 2, pp. 102-110, 2011.

J. Wang, J. Fu, F. Yu, W. Xu, and H. Wang, “An efficient extractant (2-ethylhexyl) (2,4,4′-rimethylpentyl) phosphinic acid (USTB-1) for cobalt and nickel separation from sulfate solutions,” Separation and Purification Technology, vol. 248, 117060, 2020. Doi: 10.1016/j.seppur.2020.117060.

L. E. O. C. Rodrigues, and M. B. Mansur, “Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel–metal–hydride batteries,” Journal of Power Sources, vol. 195, no. 11, pp. 3735-3741, 2010. Doi:10.1016/j.jpowsour.2009.12.071

A. E. Zarandi, D. Azizi, P. A. Nikolaychuk, F. Larachi, and L. C. Pasquier, “Selective recovery of molybdenum over rhenium from molybdenite flue dust leaching solution using PC-88A extractant, “ Metals, vol.10, no. 1423, 2020. Doi:10.3390/met10111423.

L. Lin, W. J. Hong, W. G. Yi, F. Toyohisa, and S. Atsushi, “Extraction study of cobalt (II) and nickel (II) from chloride solution using PC88A,” Transaction of Metal Society of China, vol. 16, no. 3, pp. 687-692, 2006. Doi:10.1016/S1003-6326(06)60122-2.

Copyright (c) 2023 Author(s)
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.