STRUCTURE, MECHANICAL PROPERTIES, AND OXIDATION RESISTANCE OF MN-RICH FE-MN-AL ALLOYS
Abstract
In this study, Mn-rich Fe-Mn-Al alloys with different Al content (Al = 0, 3, and 5 % by weight) were fabricated from ferromanganese lumps using a conventional powder metallurgy technique. The samples were compacted in 1 cm steel dies using a load of 8 tons and then sintered at 1100 °C for 2 h in a tubular furnace under a vacuum condition of around 0.5 mbar. To evaluate the effect of Al addition to Fe-Mn-Al alloy, the Archimedes principle and Vickers hardness were applied to estimate the density and hardness of the compact alloys. Moreover, the high-temperature oxidation resistance of the alloy was evaluated at 800 °C for 8 cycles. The structure of the alloy before and after oxidation was studied by means of X-Ray Diffractometer and SEM-EDS. The XRD analysis results show that the FeMn-0Al alloy is mainly composed Fe3Mn7 phase, the presence of FeAl phase at 3 wt% Al, and Al8Mn5 phase at 5 wt% Al. The density and hardness of Fe-Mn-Al alloys decreased with the increased Al content. Fe-Mn-Al alloy without Al addition exhibits poor oxidation resistance since the first cycle of the test. The results of microstructural analysis showed that although the alloy with the addition of 3 wt% Al showed less mass gain after being exposed for 8 cycles at 800 °C, the Fe-Mn-Al alloy with 5 wt% tended to be more resistant to oxidation and had no cracking defects. The structure of the oxide formed on the surface of the alloy is composed of two layers (ie; outer and inner layer) which are affected by each alloy composition.
Keywords
Full Text:
PDFReferences
X. W. Zhou, M. E. Foster, and R. B. Sills, “An Fe‐Ni‐Cr embedded atom method potential for austenitic and ferritic systems,” J. Comput. Chem., vol. 39, no. 29, pp. 2420–2431, Nov. 2018, doi: 10.1002/jcc.25573.
M. B. Abuzriba and S. M. Musa, “Substitution for Chromium and Nickel in Austenitic Stainless Steels,” in 2nd International Multidisciplinary Microscopy and Microanalysis Congress, vol. 164, E. K. Polychroniadis, A. Y. Oral, and M. Ozer, Eds. Cham: Springer International Publishing, 2015, pp. 205–214. doi: 10.1007/978-3-319-16919-4_27.
J.-S. Kim, S. Yong Shin, J. Eun Jung, J. Young Park, and Y. Won Chang, “Effects of tempering temperature on microstructure and tensile properties of Fe–12Mn steel,” Mater. Sci. Eng. A, vol. 640, pp. 171–179, Jul. 2015, doi: 10.1016/j.msea.2015.05.036.
M. Mohd. Rashidi and Mohd. Hasbullah Idris, “Microstructure and mechanical properties of modified ductile Ni-resist with higher manganese content,” Mater. Sci. Eng. A, vol. 574, pp. 226–234, Jul. 2013, doi: 10.1016/j.msea.2013.02.038.
A. Mondal, D. Pilone, A. Brotzu, and F. Felli, “Effect of heat treatment on mechanical properties of FeMnAlC alloys,” Procedia Struct. Integr., vol. 33, pp. 237–244, 2021, doi: 10.1016/j.prostr.2021.10.029.
W. Peng, Z. Wu, Y. Xu, Q. Ran, W. Xu, J. Li, and X. Xiao, “Internal oxidation behaviour of Fe-Mn-Al-C duplex light-weight steels with good combination of strength and ductility,” Corros. Sci., vol. 120, pp. 148–157, May 2017, doi: 10.1016/j.corsci.2017.03.005.
J.-E. Jin and Y.-K. Lee, “Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel,” Acta Mater., vol. 60, no. 4, pp. 1680–1688, Feb. 2012, doi: 10.1016/j.actamat.2011.12.004.
A. Šalak, M. Selecká, and R. Bureš, “Manganese In Ferrous Powder Metallurgy,” Powder Metall. Prog., no. 1, p. 19, 2001.
M. E. Evard, A. A. Volkov, F. S. Belyaev, A. D. Ignatova, and N. A. Volkova, “Microstructural modelling of plastic deformation and defects accumulation in FeMn-based shape memory alloys,” Procedia Struct. Integr., vol. 2, pp. 1546–1552, 2016, doi: 10.1016/j.prostr.2016.06.196.
P. Chowdhury, D. Canadinc, and H. Sehitoglu, “On deformation behavior of Fe-Mn based structural alloys,” Mater. Sci. Eng. R Rep., vol. 122, pp. 1–28, Dec. 2017, doi: 10.1016/j.mser.2017.09.002.
L. Stratil, V. Horník, P. Dymáček, P. Roupcová, and J. Svoboda, “The Influence of Aluminum Content on Oxidation Resistance of New-Generation ODS Alloy at 1200 °C,” Metals, vol. 10, no. 11, p. 1478, Nov. 2020, doi: 10.3390/met10111478.
J. Gao, Shixi Liu, Xiaojun Wang, and Wenbin Wang, “Effects of high oxygen-affinity elements on microstructure of Cu-Cr alloy ingots,” in 2013 2nd International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST), Matsue-city, Japan, Oct. 2013, pp. 1–4. doi: 10.1109/ICEPE-ST.2013.6804309.
X. Zhang, Z. Deng, H. Li, J. Mao, C. Deng, C. Deng, S. Niu, W. Chen, J. Song, J. Fan, M. Liu, and K. Zhou, “Al2O3-modified PS-PVD 7YSZ thermal barrier coatings for advanced gas-turbine engines,” Npj Mater. Degrad., vol. 4, no. 1, p. 31, Dec. 2020, doi: 10.1038/s41529-020-00134-5.
K. Kurokawa, Y. Mizuta, and H. Takahashi, “Oxidation Of Fe-Cr-Mn-Al Stainless Steels,” in High Temperature Corrosion of Advanced Materials and Protective Coatings, Elsevier, 1992, pp. 91–96. doi: 10.1016/B978-0-444-88970-6.50015-4.
A. Šalak and M. Selecká, “Thermodynamic Conditions for the Mn–O System in Sintering of Manganese Steels,” in Manganese in Powder Metallurgy Steels, Cambridge: Cambridge International Science Publishing Ltd., 2012, pp. 5–21. doi: 10.1007/978-1-907343-75-9_2.
B.-D. You, B.-W. Lee, and J.-J. Pak, “Manganese loss during the oxygen refining of high-carbon ferromanganese melts,” Met. Mater., vol. 5, no. 5, pp. 497–502, Sep. 1999, doi: 10.1007/BF03026165.
S. T. Oyama, Ed., The Chemistry of Transition Metal Carbides and Nitrides. Dordrecht: Springer Netherlands, 1996. doi: 10.1007/978-94-009-1565-7.
N. Kurgan, “Effect of porosity and density on the mechanical and microstructural properties of sintered 316L stainless steel implant materials,” Mater. Des., vol. 55, pp. 235–241, Mar. 2014, doi: 10.1016/j.matdes.2013.09.058.
H. Sazegaran, H. Bahari, A. M. Naserian-Nik, and F. Khorramshahi, “Archives of Metallurgy and MaterialsArchives of Metallurgy and Materials,” 2021, doi: 10.24425/AMM.2022.137478.
Z. Xu, M. Hodgson, K. Chang, G. Chen, X. Yuan, and P. Cao, “Effect of Sintering Time on the Densification, Microstructure, Weight Loss and Tensile Properties of a Powder Metallurgical Fe-Mn-Si Alloy,” Metals, vol. 7, no. 3, p. 81, Mar. 2017, doi: 10.3390/met7030081.
A. Bolsonella, F. Naimi, O. Heintz, T. Tricone, H. Couque, and F. Bernard, “Influence of oxygen induced during high-energy ball milling process on the mechanical properties of sintered nickel by SPS,” J. Alloys Compd., vol. 856, p. 157869, Mar. 2021, doi: 10.1016/j.jallcom.2020.157869.
F. C. Miguens, M. L. d. Oliveira, R. V. Marins, and L. D. d. Lacerda, “A new protocol to detect light elements in estuarine sediments by X-ray microanalysis (SEM/EDS),” J. Electron Microsc. (Tokyo), vol. 59, no. 5, pp. 437–446, Oct. 2010, doi: 10.1093/jmicro/dfq013.
J. Konopka and T. F. Scientific, “Options for Quantitative Analysis of Light Elements by SEM/EDS,” p. 4.
L. L. A. Nisa, B. Hermanto, S. Aritonang, M. T. E. Manawan, and T. Sudiro, “Mechanical properties and high-temperature oxidation of (WC-12Co) + MoSi2 hardmetals,” Int. J. Refract. Met. Hard Mater., p. 10, 2022.
H. Ghezelbash, A. Zeinali, N. Ehsani, and H. R. Baharvandi, “The effect of aluminum additive on pressureless sintering of SiC,” J. Aust. Ceram. Soc., vol. 55, no. 4, pp. 903–911, Dec. 2019, doi: 10.1007/s41779-019-00310-0.
A. M. Babakr, A. Al-Ahmari, K. Al-Jumayiah, and F. Habiby, “Sigma Phase Formation and Embrittlement of Cast Iron-Chromium-Nickel (Fe-Cr-Ni) Alloys,” J. Miner. Mater. Charact. Eng., vol. 07, no. 02, pp. 127–145, 2008, doi: 10.4236/jmmce.2008.72011.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.