Pengaruh Penambahan Nd2O3 dan Fe2O3 Pada Sistem Elektrolit Padat Gadolinia Doped Ceria (GDC) Untuk Aplikasi Sel Bahan Bakar Oksida Padat Suhu Menengah [Effect of Nd2O3 and Fe2O3 Addition on Gadolinia Doped Ceria (GDC) Solid Electrolyte System For IT-SOFC]

Muhammad Faisal Akbar, Bonita Dilasari, Syoni Soepriyanto, Dadan Suhendar

Abstract

Gadolinia Doped Ceria (GDC) is a solid electrolyte contender for intermediate-temperature SOFCs. However, more development of this solid electrolyte is required to improve its ionic conductivity. As a result, we will investigate the effect of Nd2O3 and Fe2O3 addition on GDC solid electrolytes to boost ionic conductivity. Solid electrolytes of the composition Ce0.9Gd0.2MxO1.9 (M = Nd, Fe) (x = 0%, 2,5% , 5%, and 7.5%) were synthesized using mixed oxide method and formed into pellets with a diameter of 1 cm. The pellets were sintered at 1200oC and 1400oC for 4 hours in an argon environment then the EIS test was performed at 450-650oC. The results showed that the Nd2O3 and Fe2O3 added were totally dissolved in the ceria structure and produced single-phase cubic fluorite CeO2. GDC solid electrolyte with Fe2O3 addition produces higher densification than Nd2O3 addition, where the value reaches 75% in the sample sintered at 1400oC. However, the addition of Nd2O3 further increased the value of ionic conductivity and decreased the activation energy of the GDC solid electrolyte compared to the addition of Fe2O3. The highest ionic conductivity and the lowest activation energy were obtained in the sample with 2.5% Nd2O3 in 650oC operating temperature, with the values achieved were 1.2 mS/cm and 0.41 eV, respectively. Therefore, it can be concluded that Nd2O3 addition is more effective to improve the performance of solid electrolyte GDC.

Abstrak

Gadolinia Doped Ceria (GDC) merupakan kandidat elektrolit padat yang dapat dipakai pada sel bahan bakar oksida padat suhu menengah. Namun masih diperlukan pengembangan dari elektrolit padat ini untuk meningkatkan konduktivitas ioniknya. Oleh karena itu, pada penelitian ini dipelajari pengaruh penambahan Nd2O3 dan Fe2O3 untuk peningkatan konduktivitas ionik elektrolit padat GDC. Elektrolit padat disintesis menggunakan metode pencampuran oksida dengan komposisi Ce0,9Gd0,2MxO1,9 (M = Nd, Fe) (x = 0,2,5%, 5% dan 7,5%) dan dibuat dalam bentuk pelet dengan diameter 1 cm. Pelet yang dihasilkan dilakukan sintering pada 1200oC dan 1400oC selama 4 jam dalam atmosfer argon kemudian dilakukan pengujian EIS pada temperatur 450-650oC.  Hasil penelitian menunjukkan bahwa Nd2O3 dan Fe2O3 yang ditambahkan akan larut sempurna dalam struktur ceria dan fasa yang dihasilkan adalah cubic flourite fasa tunggal CeO2. Elektrolit padat GDC dengan penambahan Fe2O3 akan menghasilkan densifikasi lebih tinggi dibanding dengan penambahan Nd2O3 dimana nilainya mencapai 75% pada sampel yang disinter pada 1400oC. Akan tetapi, penambahan Nd2O3 lebih meningkatkan nilai konduktivitas ionik dan menurunkan energi aktivasi dari elektrolit padat GDC dibanding dengan penambahan Fe2O3. Konduktivitas ionik tertinggi dan energi aktivasi terendah didapat pada sampel dengan penambahan Nd2O3 2,5% dengan nilai yang dicapai berturut-turut 1,2 mS/cm dan 0,41 eV. Oleh karena itu, dapat disimpulkan bahwa Nd2O3 merupakan bahan yang lebih efektif untuk meningkatkan performa dari elektrolit padat GDC.

Keywords

Solid Oxide Fuel Cell, Solid Electrolyte, Gadolinia Doped Ceria

Full Text:

PDF

References

R. O. Fuentes and R. T. Baker, “Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes,” Int. J. Hydrogen Energy, vol. 33, no. 13, pp. 3480–3484, 2008, doi: 10.1016/j.ijhydene.2007.10.026.

P. Widiatmoko, H. Devianto, I. Nurdin, F. Yusupandi, Kevino, and E. N. Ovani, “Fabrication and characterization of Intermediate-Temperature Solid Oxide Fuel Cell (IT-SOFC) single cell using Indonesia’s resources,” IOP Conf. Ser. Mater. Sci. Eng., vol. 550, no. 1, 2019, doi: 10.1088/1757-899X/550/1/012001.

Z. Gao, H. Wang, E. Miller, Q. Liu, D. Senn, and S. Barnett, “Tape Casting of High-Performance Low-Temperature Solid Oxide Cells with Thin La0.8Sr0.2Ga0.8Mg0.2O3-δ Electrolytes and Impregnated Nano Anodes,” ACS Appl. Mater. Interfaces, vol. 9, no. 8, pp. 7115–7124, 2017, doi: 10.1021/acsami.6b15224.

Yeqing Fu, “Theoretical and Experimental Study of Solid Oxide Fuel Cell (SOFC) Using Impedance Spectra Signature redacted,” p. 41, 2015.

S. A. Kumar and P. Kuppusami, Enhancing the ionic conductivity in the ceria-based electrolytes for intermediate temperature solid oxide fuel cells. INC, 2019. doi: 10.1016/B978-0-12-817445-6.00005-3.

Y. Liu, Application of Rare-Earth Doped Ceria and Natural Minerals for Solid Oxide Fuel Cells. 2019.

J. A. Kilner, “Materials for Solid-Oxide Fuel Cells”, doi: 10.1146/annurev-matsci-070813-113426.

J. Van Herle, D. Seneviratne, and A. J. McEvoy, “Lanthanide co-doping of solid electrolytes: AC conductivity behaviour,” J. Eur. Ceram. Soc., vol. 19, no. 6–7, pp. 837–841, 1999, doi: 10.1016/s0955-2219(98)00327-6.

N. Jaiswal, K. Tanwar, R. Suman, D. Kumar, S. Uppadhya, and O. Parkash, “A brief review on ceria based solid electrolytes for solid oxide fuel cells,” J. Alloys Compd., vol. 781, pp. 984–1005, 2019, doi: 10.1016/j.jallcom.2018.12.015.

D.A. Andersson et.al., "Optimization of Ionik Conductivity in Doped Ceria'. Proceedings of the National Academy of Sciences 103(10):3518-21, 2006, doi : 10.1073/pnas.0509537103 .

R. M. Ormerod, “Solid oxide fuel cells,” Chem. Soc. Rev., vol. 32, no. 1, pp. 17–28, 2003, doi: 10.1039/b105764m.

S. Y. Toor and E. Croiset, “Reducing sintering temperature while maintaining high conductivity for SOFC electrolyte: Copper as sintering aid for Samarium Doped Ceria,” Ceram. Int., vol. 46, no. 1, pp. 1148–1157, 2020, doi: 10.1016/j.ceramint.2019.09.083.

J. Cheng, C. Tian, and J. Yang, “Effects of Fe2O3 addition on the electrical properties of SDC solid electrolyte ceramics,” J. Mater. Sci. Mater. Electron., vol. 30, no. 17, pp. 16613–16620, 2019, doi: 10.1007/s10854-019-02040-2.

A. Arabacı, T. G. Altınçekiç, M. Der, and M. A. F. Öksüzömer, “Preparation and properties of ceramic electrolytes in the Nd and Gd Co-doped ceria systems prepared by polyol method,” J. Alloys Compd., vol. 792, pp. 1141–1149, 2019, doi: 10.1016/j.jallcom.2019.04.098.

S. Soepriyanto et al., “Comparative effect of REO co-dopant (La, Y, Nd) on ionic conductivity of Gd-doped CeO2 solid electrolyte for IT-SOFC,” J. Aust. Ceram. Soc., vol. 55, no. 4, pp. 1161–1165, 2019, doi: 10.1007/s41779-019-00332-8.

A. Arabacı, “Citrate/nitrate combustion synthesis and electrical properties of rare earth co-doped Ce0.8Gd0.2−xNdxO1.90 electrolyte materials,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 260, no. July, 2020, doi: 10.1016/j.mseb.2020.114646.

A.Nugroho, S. Soepriyanto, "Karakteristik Fisik dan Konduktivitas Spesifik Batas Butir dari Elektrolit Padat Gadolinium Ceria (GC) Untuk Aplikasi Bahan Bakar Oksida Padat Temperatur Menengah. Majalah Ilmu dan Teknologi Vol 35, No 1. Doi : 10.14203/metalurgi.v35i1.467

Y. Zheng, M. Zhou, L. Ge, S. Li, H. Chen, and L. Guo, “Effect of Fe2O3 on Sm-doped ceria system solid electrolyte for IT-SOFCs,” J. Alloys Compd., vol. 509, no. 2, pp. 546–550, 2011, doi: 10.1016/j.jallcom.2010.09.103.

Z. Wang, Y. Zeng, C. Li, Z. Ye, L. Cao, and Y. Zhang, “Structures and electrical conductivities of Gd3+ and Fe3+ co-doped cerium oxide electrolytes sintered at low temperature for ILT-SOFCs,” Ceram. Int., vol. 44, no. 9, pp. 10328–10334, 2018, doi: 10.1016/j.ceramint.2018.03.041.

N. Priyadharsini, M. Thamilselvan, S. Sangeetha, and S. Vairam, “Effect of neodymium substitution on structural, optical, magnetic and antibacterial activity of zinc selenide nanoparticles,” J. Ovonic Res., vol. 12, no. 2, pp. 87–93, 2016.

S. Dikmen, H. Aslanbay, E. Dikmen, and O. Şahin, “Hydrothermal preparation and electrochemical properties of Gd3+ and Bi3+, Sm3+, La3+, and Nd3+ codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell,” J. Power Sources, vol. 195, no. 9, pp. 2488–2495, 2010, doi: 10.1016/j.jpowsour.2009.11.077.

N. Kim, B. Kim, and D. Lee, “Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte,” pp. 139–143, 2000.

A. S. Babu, R. Bauri, and G. S. Reddy, “Processing and conduction behavior of nanocrystalline Gd-doped and rare earth co-doped ceria electrolytes,” Electrochim. Acta, vol. 209, pp. 541–550, 2016, doi: 10.1016/j.electacta.2016.05.118.

Q. Dong, Z. H. Du, T. S. Zhang, J. Lu, X. C. Song, and J. Ma, “Sintering and ionic conductivity of 8YSZ and CGO10 electrolytes with small addition of Fe2O3: A comparative study,” Int. J. Hydrogen Energy, vol. 34, no. 19, pp. 7903–7909, 2009, doi: 10.1016/j.ijhydene.2009.06.042.

Y. Liu, B. Li, X. Wei, and W. Pan, “Citric-nitrate combustion synthesis and electrical conductivity of the Sm3+ and Nd3+ co-doped ceria electrolyte,” J. Am. Ceram. Soc., vol. 91, no. 12, pp. 3926–3930, 2008, doi: 10.1111/j.1551-2916.2008.02748.x.

Copyright (c) 2022 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.