HARDNESS AND CORROSION BEHAVIOR OF Ti-20Cu-20Ni-20Mn- 20Zn AS HIGH ENTROPY ALLOY AND TI-13Cu-9Ni-5Mn-5Zn FOR MARINE STRUCTURE APPLICATION

Muhammad Azhar Ariefkha Dani, Bonita Dilasari, Yudi Nugraha Thaha, Ika Kartika, Fendy Rokhmanto

Abstract

An aneurysm clip is an implant tool for assisting the neurosurgeon in treating acute hemorrhagic stroke and cerebral aneurysm. This equipment stops the blood flow of a ruptured or enlarged blood vessel or aneurysm. In the development of aneurysm clip production, titanium alloy is the most used material selection. Several researchers reported that this metal leads to artifacts during MR (magnetic resonance) or CT (computed tomography) imaging. Since several pieces of evidence polyurethane could be a good material selection for aneurysm clips, this paper aims to investigate the material properties of the polyurethane foam with an additional combination of magnesium and zinc. This study conducts magnesium and zinc composition variations of 1 wt.%, 2 wt.%, and 3 wt.%, respectively. The materials were tested using a compression test, a FTIR (fourier-transform-infrared), SEM (scanning-electron-microscope), DSC (differential-scanning-calorimetry), and TGA (thermogravimetric-analyzer) to determine the material properties. From all examinations, adding magnesium and zinc to polyurethane foam affected the compressive strength and porosity of the polyurethane foam. Therefore, all test results concluded that adding magnesium with a composition of 3wt.%, which has a compressive strength of 0.84 MPa, is the best mixture. The idea of finding other compositions that are compatible with the polyurethane will significantly increase the possibility of new materials for aneurysm clip construction.

Keywords

Beta-titanium, high entropy alloys, powder metallurgy, corrosion, sodium chloride, Beta titanium, paduan entropi tinggi, metalurgi serbuk, korosi, natrium klorida

Full Text:

PDF

References

F. Rokhmanto, “Pengaruh Kandungan Mo dan Nb di Dalam Paduan Logam Implan (Ti-Al-Mo dan Ti-Al-Nb) Terhadap Pembentukan Fasa Beta,” Universitas Indonesia, 2009.

R. P. Kolli and A. Devaraj, “A review of metastable beta titanium alloys,” Metals (Basel)., vol. 8, no. 7, pp. 1–41, 2018, doi: 10.3390/met8070506.

J. W. Yeh et al., “State of the Art in Beta Titanium Alloys for Airframe Applications,” J. Appl. Biomater. Funct. Mater., vol. 67, no. 6, pp. 1281–1303, 2015, doi: 10.1007/s11837-015-1442-4.

J. D. Cotton et al., “State of the Art in Beta Titanium Alloys for Airframe Applications,” Jom, vol. 67, no. 6, pp. 1281–1303, 2015, doi: 10.1007/s11837-015-1442-4.

M. H. Tsai and J. W. Yeh, “High-entropy alloys: A critical review,” Mater. Res. Lett., vol. 2, no. 3, pp. 107–123, 2014, doi: 10.1080/21663831.2014.912690.

Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, “High-entropy alloy: challenges and prospects,” Mater. Today, vol. 19, no. 6, pp. 349–362, 2016, doi: 10.1016/j.mattod.2015.11.026.

E. P. George, D. Raabe, and R. O. Ritchie, “High-entropy alloys,” Nat. Rev. Mater., vol. 4, no. 8, pp. 515–534, 2019, doi: 10.1038/s41578-019-0121-4.

Arief Sasongko et al, “Perhitungan Komposisi Paduan High-Entropy Alloy AlCrMoNbZr untuk Karakterisasi Bahan Struktur Elemen Bakar Reaktor Daya,” no. October, 2021, doi: 10.13140/RG.2.2.21176.26885.

J. Yeh, Y. Chen, S. Lin, and S. Chen, “High-Entropy Alloys – A New Era of Exploitation,” vol. 560, pp. 1–9, 2007, doi: 10.4028/www.scientific.net/MSF.560.1.

D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater., vol. 122, pp. 448–511, 2017, doi: 10.1016/j.actamat.2016.08.081.

Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, “High-entropy alloy : challenges and prospects,” vol. 00, no. 00, 2015, doi: 10.1016/j.mattod.2015.11.026.

G. P. Vassilev, X. J. Liu, and K. Ishida, “Reaction kinetics and phase diagram studies in the Ti-Zn system,” J. Alloys Compd., vol. 375, no. 1–2, pp. 162–170, 2004, doi: 10.1016/j.jallcom.2003.11.026.

M. Kikuchi et al., “Mechanical properties and microstructures of cast Ti-Cu alloys,” Dent. Mater., vol. 19, no. 3, pp. 174–181, 2003, doi: 10.1016/S0109-5641(02)00027-1.

T. Nakahata, Industrial processing of titanium–nickel (Ti–Ni) shape memory alloys (SMAs) to achieve key properties. Woodhead Publishing Limited, 2011. doi: 10.1533/9780857092625.1.53.

J. L. Murray, “The Mn-Ti ( Manganese-Titanium ) System,” vol. 2, no. 3, pp. 334–343, 1981.

Y. Alshammari, F. Yang, and L. Bolzoni, “Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications,” J. Mech. Behav. Biomed. Mater., vol. 91, pp. 391–397, 2019, doi: 10.1016/j.jmbbm.2018.12.005.

Z. Yan, X. Yuan, Z. Tan, M. Tang, and Z. Feng, “Effect of in situ Ion NitrideTreatment on the Corrosion Behavior of Titanium,” vol. 13, pp. 353–361, 2018, doi: 10.20964/2018.01.23.

S. Feliu, “Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges,” Metals (Basel)., vol. 10, no. 6, pp. 1–23, 2020, doi: 10.3390/met10060775.

S. Nomura et al., “Randles circuit model for characterizing a porous stimulating electrode of the retinal prosthesis,” Electron. Commun. Japan, vol. 104, no. 3, pp. 1–9, 2021, doi: 10.1002/ecj.12324.

Copyright (c) 2022 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.