HARDNESS AND CORROSION BEHAVIOR OF Ti-20Cu-20Ni-20Mn- 20Zn AS HIGH ENTROPY ALLOY AND TI-13Cu-9Ni-5Mn-5Zn FOR MARINE STRUCTURE APPLICATION
Abstract
Keywords
Full Text:
PDFReferences
F. Rokhmanto, “Pengaruh Kandungan Mo dan Nb di Dalam Paduan Logam Implan (Ti-Al-Mo dan Ti-Al-Nb) Terhadap Pembentukan Fasa Beta,” Universitas Indonesia, 2009.
R. P. Kolli and A. Devaraj, “A review of metastable beta titanium alloys,” Metals (Basel)., vol. 8, no. 7, pp. 1–41, 2018, doi: 10.3390/met8070506.
J. W. Yeh et al., “State of the Art in Beta Titanium Alloys for Airframe Applications,” J. Appl. Biomater. Funct. Mater., vol. 67, no. 6, pp. 1281–1303, 2015, doi: 10.1007/s11837-015-1442-4.
J. D. Cotton et al., “State of the Art in Beta Titanium Alloys for Airframe Applications,” Jom, vol. 67, no. 6, pp. 1281–1303, 2015, doi: 10.1007/s11837-015-1442-4.
M. H. Tsai and J. W. Yeh, “High-entropy alloys: A critical review,” Mater. Res. Lett., vol. 2, no. 3, pp. 107–123, 2014, doi: 10.1080/21663831.2014.912690.
Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, “High-entropy alloy: challenges and prospects,” Mater. Today, vol. 19, no. 6, pp. 349–362, 2016, doi: 10.1016/j.mattod.2015.11.026.
E. P. George, D. Raabe, and R. O. Ritchie, “High-entropy alloys,” Nat. Rev. Mater., vol. 4, no. 8, pp. 515–534, 2019, doi: 10.1038/s41578-019-0121-4.
Arief Sasongko et al, “Perhitungan Komposisi Paduan High-Entropy Alloy AlCrMoNbZr untuk Karakterisasi Bahan Struktur Elemen Bakar Reaktor Daya,” no. October, 2021, doi: 10.13140/RG.2.2.21176.26885.
J. Yeh, Y. Chen, S. Lin, and S. Chen, “High-Entropy Alloys – A New Era of Exploitation,” vol. 560, pp. 1–9, 2007, doi: 10.4028/www.scientific.net/MSF.560.1.
D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater., vol. 122, pp. 448–511, 2017, doi: 10.1016/j.actamat.2016.08.081.
Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, “High-entropy alloy : challenges and prospects,” vol. 00, no. 00, 2015, doi: 10.1016/j.mattod.2015.11.026.
G. P. Vassilev, X. J. Liu, and K. Ishida, “Reaction kinetics and phase diagram studies in the Ti-Zn system,” J. Alloys Compd., vol. 375, no. 1–2, pp. 162–170, 2004, doi: 10.1016/j.jallcom.2003.11.026.
M. Kikuchi et al., “Mechanical properties and microstructures of cast Ti-Cu alloys,” Dent. Mater., vol. 19, no. 3, pp. 174–181, 2003, doi: 10.1016/S0109-5641(02)00027-1.
T. Nakahata, Industrial processing of titanium–nickel (Ti–Ni) shape memory alloys (SMAs) to achieve key properties. Woodhead Publishing Limited, 2011. doi: 10.1533/9780857092625.1.53.
J. L. Murray, “The Mn-Ti ( Manganese-Titanium ) System,” vol. 2, no. 3, pp. 334–343, 1981.
Y. Alshammari, F. Yang, and L. Bolzoni, “Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications,” J. Mech. Behav. Biomed. Mater., vol. 91, pp. 391–397, 2019, doi: 10.1016/j.jmbbm.2018.12.005.
Z. Yan, X. Yuan, Z. Tan, M. Tang, and Z. Feng, “Effect of in situ Ion NitrideTreatment on the Corrosion Behavior of Titanium,” vol. 13, pp. 353–361, 2018, doi: 10.20964/2018.01.23.
S. Feliu, “Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges,” Metals (Basel)., vol. 10, no. 6, pp. 1–23, 2020, doi: 10.3390/met10060775.
S. Nomura et al., “Randles circuit model for characterizing a porous stimulating electrode of the retinal prosthesis,” Electron. Commun. Japan, vol. 104, no. 3, pp. 1–9, 2021, doi: 10.1002/ecj.12324.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.