Studi Inhibitor Korosi Berbasis Imidazoline Salt Pada Brine Water Di Pipa Penyalur Minyak Mentah [Studies of Imidazoline Salt Inhibitor for Brine Water in Crude Oil Pipeline]
Abstract
A study of imidazoline salt inhibitor for brine water in crude oil pipeline was carried out using tafel polarization test, Fourier Transform Infrared Spectroscopy (FTIR) and Electrochemical Impedance Spectroscopy (EIS). A type of specimen used in this research is API 5L grade B. The solution of brine water came from fluid in crude oil pipeline. The addition of commercial inhibitor of imidazoline salt base was conducted with range of 3-40 ppm for polarization test and range of 3-20 ppm for EIS test. The addition of imidazoline salt at 3-20 ppm is effective to decrease corrosion rate and to increase inhibitor efficiency up to 95% . The resistance of adsorbed molecule layer increase with the addition of inhibitor compared without inhibitor, where this addition could decrease the electrochemical reaction on the surface. The decrease of corrosion rate took place due to the presence of adsorbed thin layer in metal surface.
Abstrak
Studi kinerja inhibitor imidazoline salt pada brine water di pipa penyalur minyak mentah dilakukandengan melakukan pengujian tafel, Fourier Transform Infrared Spectroscopy (FTIR) dan Electrochemical Impedance Spectroscopy (EIS). Jenis spesimen uji baja yang digunakan dalam penelitian adalah API 5L dan larutan brine water berasal dari 70% dari total fluida di pipa penyalur minyak mentah. Penambahan inhibitor komersial berbasis imidazoline salt dilakukan dengan variasi 3 - 40 ppm untuk pengujian polarisasi dan variasi 3 - 20 ppm untuk pengujian EIS. Penambahan inhibitor berbasis imidazoline salt antara 3 – 20 ppm secara efektif dapat menurunkan nilai laju korosi dan meningkatkan efisiensi inhibitor hingga 95%. Tahanan lapisan adsorpsi molekul dengan penambahan inhibitor meningkat dibandingkan kondisi tanpa inhibitor, dimana hal ini dapat menurunkan aktifitas reaksi elektrokimia di permukaan baja. Penurunan laju korosi terjadi dikarenakan pembentukan lapisan tipis yang teradsopsi di permukaan logam.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
R. Álvarez-Manzo, J. Mendoza-Canales, S. Castillo-Cervantes, and J. Marín-Cruz, “Studies on the Development of New Efficient Corrosion Inhibitors forCrude Oil Pipelines: Electrochemical Impedance Spectroscopy Results for 1,8- Naphthyridines,” Journal of Mexican Chemical Society., Vol. 57(1), pp. 30-35, 2013.
L.M. Rivera-Grau, M. Casales, I. Regla, D. M. Ortega-Toledo, J.G. Gonzalez-Rodriguez, L. Martinez Gomez, “CO2 Corrosion Inhibition by Imidazoline Derivatives Based on Coconut Oil,” International Journal of Electrochemical Science., Vol. 7, pp. 13044-13057, 2012.
X.Jiang, Y.G.Zheng, D.R.Qu and W.Ke, “Effect of calcium ions on pitting corrosion and inhibition performance in CO2 corrosion of N80 steel,” Corrosion Science 48(10): 3091-3108, 2006.
T.Hong, Y.H.Sun and W.P. Jepson, “Study on corrosion inhibitor in large pipelines under multiphase flow using EIS,” Corrosion Science., Vol. 44(1), pp. 101-112, 2002.
F.Bentiss, M. Lagrenee, M.Traisnel and J.C. Hornez, “The corrosion inhibition of mild steel in acidic media by a new
triazole derivative,” Corrosion Science., Vol. 41(4), pp. 789-803, 1999.
ASTM G5-94, “Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization
Measurement”, 2011.
ASTM G106 – 89, “ Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance
Measurements”, 2015
H.M. Abd El-Lateef, V.M. Abbasov, L.I. Aliyeva and T.A. Ismayilov, “Corrosion Protection of Steel Pipelines Against CO2
Corrosion-A Review,” Chemistry Journal.,Vol. 2(2), pp. 52-63, 2012.
Osokogwu,U,Oghenekaro .E, “Evaluation of Corrosion Inhibitors Effectiveness in Oilfield Production Operations,” International Journal of Scientific & Technology Research., Vol. 1(4), pp. 19-23, 2012.
A.Khavasfar, M. H.Moayed and A.H. Jafari, “An Investigation on the Performance of an Imidazoline Based Commercial Corrosion Inhibitor on CO2 Corrosion of Mild Steel,” IJE Transactions A:Basic., Vol. 20(1), pp 35-44, 2007.
P.R. Roberge, “Handbook of Corrosion Engineering,” New York: McGraw-Hill, pp.835, 1999.
T. Sethi, A. Chaturvedi, R.K. Upadhyay and S.P. Mathur, “Corrosion Inhibitory Effects of Some Schiff`s Bases on Mild Steel in Acid Media,” Journal of the Chilean Chemical Society., Vol. 52(3), pp. 1206-1213, 2007.
S. Mohammadi, F.B. Ravari, and A. Dadgarinezhad, “Improvement in Corrosion Inhibition Efficiency of Molybdate-Based Inhibitors via Addition of Nitroethane and Zinc in Stimulated
Cooling Water,” ISRN Corrosion., Article ID 515326, 2012.
Wang, B. , Du, M, “Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion,” Corrosion Science., Vol. 53, pp. 353–361, 2011.
Zhang, J., Gong, X.L., Yu, H.H., Du, M, “The inhibition mechanism of imidazoline phosphate inhibitor for Q235 steel in
hydrochloric acid medium,” Corrosion Science., Vol. 53, pp. 3324 -3330, 2011.
P. C. Lin, I. W Sun, J.K Chang, C.J Su, Jing-C. Lin, “Corrosion characteristics of nickel, copper, and stainless steel in a Lewis neutral chloroaluminate ionic liquid,” Corrosion Science., Vol. 53(12): pp. 4318-4323, 2011.
S. Nesic, B.F.M.Pots, J. Postlethwaite and N.Thevenot, “Superposition of Diffusion and Chenical Reaction Controlled
Limiting Currents- Aplication to CO2 Application,” Technical report., Institute for Energy Technology, pp. 1-9.
Teresa E. Perez, “Corrosion in the Oil and Gas Industry: An Increasing Challenge for Materials,” JOM., Vol. 65, 2013.
A. J. Szyprowski,2003, “Methods of Investigation on Hydrogen Sulfide Corrosion of Steel and Its Inhibitors,” Corrosion., Vol. 59(1), pp. 68-81, 2013.
Anbarasi, M., Rajendran, M., Pandiarajan, M., dan Krishnaveni, A, “An Encounter with Corrosion Inhibitors,” Eur. Chem. Bull., Vol. 2(4), pp. 197-207, 2013.
Fei, F., Hu, J., Wei, J., Yu,Q., Chen, Z, “Corrosion performance of steel reinforcement in simulated concrete pore solutions in the presence of imidazoline quaternary ammonium salt corrosion
inhibitor,” Construction and Building Materials., Vol. 70, pp. 43–53, 2014.
Topilnitskij, P, “Corrosion Protection of Oil Production and Refinery Equipment,” Chemistry and Chemical Tech., Vol. 1(1),
pp. 45-54, 2007.
Porcayo-Calderon, J., Regla, I., Vazquez-Velez, E., Martinez de la Escalera, L.M.,Canto, J., and Casales-Diaz, M, “Effect of the Saturation of the Hydrocarbon Chain of Fatty-Amides on the CO2 Corrosion of Carbon Steel Using EIS and Ral Time Corrosion Measurement,” Journal of Spectroscopy., Vol. 1-13, 2015.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.