THE EFFECT OF PRECIPITATION ON MICROSTRUCTURE AND CORROSION BEHAVIOUR OF ZK60 SUBJECTED TO SEVERE PLASTIC DEFORMATION AS BIODEGRADABLE MATERIAL
Abstract
Keywords
Full Text:
PDFReferences
Oldani, C., & Dominguez, A. (2012). Titanium as a Biomaterial for Implants. Recent advances in arthroplasty, 218, 149-162.
Kulkarni, M., Mazare, A., Schmuki, P., & Iglič, A. (2014). Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine, 111, 111.
Prasad, S., Ehrensberger, M., Gibson, M. P., Kim, H., & Monaco Jr, E. A. (2015). Biomaterial properties of titanium in dentistry. Journal of oral biosciences, 57(4), 192-199.
Kheirkhah, M., Fathi, M., Salimijazi, H. R., & Razavi, M. (2015). Surface modification of stainless steel implants using nanostructured forsterite (Mg2SiO4) coating for biomaterial applications. Surface and Coatings Technology, 276, 580-586.
Silva, E. S., Sousa, R. C., Jorge Jr, A. M., & Balancin, O. (2012). Hot deformation behavior of an Nb-and N-bearing austenitic stainless steel biomaterial. Materials Science and Engineering: A, 543, 69-75.
Muslim, Z. R., & Abbas, A. A. (2015). The effect of ph and temperature on corrosion rate stainless steel 316l used as biomaterial. Int. J. Basic Appl. Sci, 4, 17-20.
Tan, Y., Liu, Y., & Grover, L. (2014). Effect of phosphoric acid on the properties of magnesium oxychloride cement as a biomaterial. Cement and concrete research, 56, 69-74.
Henderson, S. E., Verdelis, K., Maiti, S., Pal, S., Chung, W. L., Chou, D. T., ... & Almarza, A. J. (2014). Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta biomaterialia, 10(5), 2323-2332.
Nan, M., Yangmei, C., & Bangcheng, Y. (2014). Magnesium metal—A potential biomaterial with antibone cancer properties. Journal of Biomedical Materials Research Part A, 102(8), 2644-2651.
Walker, J., Shadanbaz, S., Woodfield, T. B., Staiger, M. P., & Dias, G. J. (2014). Magnesium biomaterials for orthopedic application: a review from a biological perspective. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 1316-1331.
Tahmasebifar, A., Kayhan, S. M., Evis, Z., Tezcaner, A., Cinici, H., & Koc, M. (2016). Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial. Journal of Alloys and Compounds, 687, 906-919.
Hideo-Kajita, A., Wopperer, S., Seleme, V. B., Ribeiro, M. H., & Campos, C. M. (2019). The development of magnesium-based resorbable and iron-based biocorrodible metal scaffold technology and biomedical applications in coronary artery disease patients. Applied Sciences, 9(17), 3527.
Fu, J., Su, Y., Qin, Y. X., Zheng, Y., Wang, Y., & Zhu, D. (2020). Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials, 230, 119641.
Heakal, F. E. T., & Bakry, A. M. (2018). Serum albumin can influence magnesium alloy degradation in simulated blood plasma for cardiovascular stenting. Materials Chemistry and Physics, 220, 35-49.
Chen, C., Tan, J., Wu, W., Petrini, L., Zhang, L., Shi, Y., ... & Migliavacca, F. (2018). Modeling and experimental studies of coating delamination of biodegradable magnesium alloy cardiovascular stents. Acs Biomaterials Science & Engineering, 4(11), 3864-3873.
Kitabata, H., Waksman, R., & Warnack, B. (2014). Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovascular Revascularization Medicine, 15(2), 109-116.
Huot, J., Skryabina, N. Y., & Fruchart, D. (2012). Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties. Metals, 2(3), 329-343.
Silva, C. L., Oliveira, A. C., Costa, C. G., Figueiredo, R. B., de Fátima Leite, M., Pereira, M. M., ... & Langdon, T. G. (2017). Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium. Journal of Materials Science, 52(10), 5992-6003.
Figueiredo, R. B., Sabbaghianrad, S., Giwa, A., Greer, J. R., & Langdon, T. G. (2017). Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation. Acta Materialia, 122, 322-331.
Young, J. P., Askari, H., Hovanski, Y., Heiden, M. J., & Field, D. P. (2015). Thermal microstructural stability of AZ31 magnesium after severe plastic deformation. Materials Characterization, 101, 9-19.
Jahadi, R., Sedighi, M., & Jahed, H. (2014). ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy. Materials Science and Engineering: A, 593, 178-184.
Minárik, P., Král, R., & Janeček, M. (2013). Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Applied Surface Science, 281, 44-48.
Minárik, P., Král, R., Čížek, J., & Chmelík, F. (2016). Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Materialia, 107, 83-95.
Yuan, Y., Ma, A., Gou, X., Jiang, J., Arhin, G., Song, D., & Liu, H. (2016). Effect of heat treatment and deformation temperature on the mechanical properties of ECAP processed ZK60 magnesium alloy. Materials Science and Engineering: A, 677, 125-132.
Minárik, P., Král, R., Pešička, J., Daniš, S., & Janeček, M. (2016). Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP. Materials Characterization, 112, 1-10.
Sun, J., Yang, Z., Han, J., Liu, H., Song, D., Jiang, J., & Ma, A. (2018). High strength and ductility AZ91 magnesium alloy with multi-heterogenous microstructures prepared by high-temperature ECAP and short-time aging. Materials Science and Engineering: A, 734, 485-490.
Cabibbo, M., Paoletti, C., Minárik, P., Král, R., & Zemková, M. (2019). Secondary phase precipitation and thermally stable microstructure refinement induced by ECAP on Mg-Y-Nd (WN43) alloy. Materials Letters, 237, 5-8.
Mostaed, E., Hashempour, M., Fabrizi, A., Dellasega, D., Bestetti, M., Bonollo, F., & Vedani, M. (2014). Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications. Journal of the Mechanical Behavior of Biomedical Materials, 37, 307-322.
Gopi, K. R., Nayaka, H. S., & Sahu, S. (2018). Corrosion Behavior of ECAP-Processed AM90 Magnesium Alloy. Arabian Journal for Science & Engineering (Springer Science & Business Media BV), 43(9).
Gholami‐Kermanshahi, M., Neubert, V. D., Tavakoli, M., Pastorek, F., Smola, B., & Neubert, V. (2018). Effect of ECAP processing on corrosion behavior and mechanical properties of the ZFW MP magnesium alloy as a biodegradable implant material. Advanced Engineering Materials, 20(10), 1800121.
Naik, G. M., Narendranath, S., & Kumar, S. S. (2019). Effect of ECAP die angles on microstructure mechanical properties and corrosion behavior of AZ80 Mg alloy. Journal of Materials Engineering and Performance, 28(5), 2610-2619.
Witecka, A., Bogucka, A., Yamamoto, A., Máthis, K., Krajňák, T., Jaroszewicz, J., & Święszkowski, W. (2016). In vitro degradation of ZM21 magnesium alloy in simulated body fluids. Materials Science and Engineering: C, 65, 59-69.
Alateyah, A. I., Aljohani, T. A., Alawad, M. O., El-Hafez, H. A., Almutairi, A. N., Alharbi, E. S., ... & El-Garaihy, W. H. (2021). Improved Corrosion Behavior of AZ31 Alloy through ECAP Processing. Metals, 11(2), 363.
Song, D., Li, C., Liang, N., Yang, F., Jiang, J., Sun, J., ... & Ma, X. (2019). Simultaneously improving corrosion resistance and mechanical properties of a magnesium alloy via equal-channel angular pressing and post water annealing. Materials & Design, 166, 107621.
Yang, Z., Ma, A., Xu, B., Jiang, J., & Sun, J. (2021). Corrosion behavior of AZ91 Mg alloy with a heterogeneous structure produced by ECAP. Corrosion Science, 187, 109517.
Gzyl, M., Rosochowski, A., Boczkal, S., & Olejnik, L. (2015). The role of microstructure and texture in controlling mechanical properties of AZ31B magnesium alloy processed by I-ECAP. Materials Science and Engineering: A, 638, 20-29.
Seipp, S., Wagner, M. F. X., Hockauf, K., Schneider, I., Meyer, L. W., & Hockauf, M. (2012). Microstructure, crystallographic texture and mechanical properties of the magnesium alloy AZ31B after different routes of thermo-mechanical processing. International Journal of Plasticity, 35, 155-166.
Martynenko, N., Lukyanova, E., Serebryany, V., Prosvirnin, D., Terentiev, V., Raab, G., ... & Estrin, Y. (2019). Effect of equal channel angular pressing on structure, texture, mechanical and in-service properties of a biodegradable magnesium alloy. Materials Letters, 238, 218-221.
Stráská, J., Stráský, J., & Janeček, M. (2015). Activation Energy for Grain Growth of the Isochronally Annealed Ultrafine Grained Magnesium Alloy after Hot Extrusion and Equal-Channel Angular Pressing (EX-ECAP). Acta Physica Polonica, A., 128(4).
Stráská, J., Janeček, M., Čížek, J., Stráský, J., & Hadzima, B. (2014). Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP). Materials Characterization, 94, 69-79.
Tan, Y., Li, W., Hu, W., Shi, X., & Tian, L. (2019). The Effect of ECAP temperature on the microstructure and properties of a rolled rare earth magnesium alloy. Materials, 12(9), 1554.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.