THE EFFECT OF PRECIPITATION ON MICROSTRUCTURE AND CORROSION BEHAVIOUR OF ZK60 SUBJECTED TO SEVERE PLASTIC DEFORMATION AS BIODEGRADABLE MATERIAL

Muhammad Rifai

Abstract

Microstructure and corrosion behaviour of ZK60 subjected to severe plastic deformation (SPD) as biodegradable material has been investigated in terms of grain refinement process and precipitation formation. Equal channel angular pressing (ECAP) was one of the well-known SPD techniques due to their advantages to promote dislocation and grain fragmentation. ZK60 billet was cut to a 10 mm diameter cylindrical shape for biodegradable material application. ECAP process was carried out up to two passes by Route Bc at 423 K temperature process. Microhardness test was performed at ECAP processed sample, and the structure observation was carried by optical microscope and transmission electron microscope. The corrosion behaviour of the material was investigated by an anodic polarization curve. The ECAP process promotes dislocation accumulation efficiently and ultrafine-grained structure formation. It may improve the formability characteristic of ZK60. The hardness also showed significant increment during the ECAP process due to the high level of deformation. Corrosion behaviours and microstructure observation during the ECAP process showed a correlation that concluded that grain refinement and precipitation formation influenced the electrochemical properties. The alloying element such as Zn and Zr promoted the protective film for corrosion due to their ability for pitting protection. ECAP improved the precipitation formation for corrosion resistance, microstructure uniformity and material formability.

Keywords

Precipitation, structure, corrosion, ZK60.

Full Text:

PDF

References

Oldani, C., & Dominguez, A. (2012). Titanium as a Biomaterial for Implants. Recent advances in arthroplasty, 218, 149-162.

Kulkarni, M., Mazare, A., Schmuki, P., & Iglič, A. (2014). Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine, 111, 111.

Prasad, S., Ehrensberger, M., Gibson, M. P., Kim, H., & Monaco Jr, E. A. (2015). Biomaterial properties of titanium in dentistry. Journal of oral biosciences, 57(4), 192-199.

Kheirkhah, M., Fathi, M., Salimijazi, H. R., & Razavi, M. (2015). Surface modification of stainless steel implants using nanostructured forsterite (Mg2SiO4) coating for biomaterial applications. Surface and Coatings Technology, 276, 580-586.

Silva, E. S., Sousa, R. C., Jorge Jr, A. M., & Balancin, O. (2012). Hot deformation behavior of an Nb-and N-bearing austenitic stainless steel biomaterial. Materials Science and Engineering: A, 543, 69-75.

Muslim, Z. R., & Abbas, A. A. (2015). The effect of ph and temperature on corrosion rate stainless steel 316l used as biomaterial. Int. J. Basic Appl. Sci, 4, 17-20.

Tan, Y., Liu, Y., & Grover, L. (2014). Effect of phosphoric acid on the properties of magnesium oxychloride cement as a biomaterial. Cement and concrete research, 56, 69-74.

Henderson, S. E., Verdelis, K., Maiti, S., Pal, S., Chung, W. L., Chou, D. T., ... & Almarza, A. J. (2014). Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta biomaterialia, 10(5), 2323-2332.

Nan, M., Yangmei, C., & Bangcheng, Y. (2014). Magnesium metal—A potential biomaterial with antibone cancer properties. Journal of Biomedical Materials Research Part A, 102(8), 2644-2651.

Walker, J., Shadanbaz, S., Woodfield, T. B., Staiger, M. P., & Dias, G. J. (2014). Magnesium biomaterials for orthopedic application: a review from a biological perspective. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 1316-1331.

Tahmasebifar, A., Kayhan, S. M., Evis, Z., Tezcaner, A., Cinici, H., & Koc, M. (2016). Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial. Journal of Alloys and Compounds, 687, 906-919.

Hideo-Kajita, A., Wopperer, S., Seleme, V. B., Ribeiro, M. H., & Campos, C. M. (2019). The development of magnesium-based resorbable and iron-based biocorrodible metal scaffold technology and biomedical applications in coronary artery disease patients. Applied Sciences, 9(17), 3527.

Fu, J., Su, Y., Qin, Y. X., Zheng, Y., Wang, Y., & Zhu, D. (2020). Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials, 230, 119641.

Heakal, F. E. T., & Bakry, A. M. (2018). Serum albumin can influence magnesium alloy degradation in simulated blood plasma for cardiovascular stenting. Materials Chemistry and Physics, 220, 35-49.

Chen, C., Tan, J., Wu, W., Petrini, L., Zhang, L., Shi, Y., ... & Migliavacca, F. (2018). Modeling and experimental studies of coating delamination of biodegradable magnesium alloy cardiovascular stents. Acs Biomaterials Science & Engineering, 4(11), 3864-3873.

Kitabata, H., Waksman, R., & Warnack, B. (2014). Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovascular Revascularization Medicine, 15(2), 109-116.

Huot, J., Skryabina, N. Y., & Fruchart, D. (2012). Application of severe plastic deformation techniques to magnesium for enhanced hydrogen sorption properties. Metals, 2(3), 329-343.

Silva, C. L., Oliveira, A. C., Costa, C. G., Figueiredo, R. B., de Fátima Leite, M., Pereira, M. M., ... & Langdon, T. G. (2017). Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium. Journal of Materials Science, 52(10), 5992-6003.

Figueiredo, R. B., Sabbaghianrad, S., Giwa, A., Greer, J. R., & Langdon, T. G. (2017). Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation. Acta Materialia, 122, 322-331.

Young, J. P., Askari, H., Hovanski, Y., Heiden, M. J., & Field, D. P. (2015). Thermal microstructural stability of AZ31 magnesium after severe plastic deformation. Materials Characterization, 101, 9-19.

Jahadi, R., Sedighi, M., & Jahed, H. (2014). ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy. Materials Science and Engineering: A, 593, 178-184.

Minárik, P., Král, R., & Janeček, M. (2013). Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Applied Surface Science, 281, 44-48.

Minárik, P., Král, R., Čížek, J., & Chmelík, F. (2016). Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Materialia, 107, 83-95.

Yuan, Y., Ma, A., Gou, X., Jiang, J., Arhin, G., Song, D., & Liu, H. (2016). Effect of heat treatment and deformation temperature on the mechanical properties of ECAP processed ZK60 magnesium alloy. Materials Science and Engineering: A, 677, 125-132.

Minárik, P., Král, R., Pešička, J., Daniš, S., & Janeček, M. (2016). Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP. Materials Characterization, 112, 1-10.

Sun, J., Yang, Z., Han, J., Liu, H., Song, D., Jiang, J., & Ma, A. (2018). High strength and ductility AZ91 magnesium alloy with multi-heterogenous microstructures prepared by high-temperature ECAP and short-time aging. Materials Science and Engineering: A, 734, 485-490.

Cabibbo, M., Paoletti, C., Minárik, P., Král, R., & Zemková, M. (2019). Secondary phase precipitation and thermally stable microstructure refinement induced by ECAP on Mg-Y-Nd (WN43) alloy. Materials Letters, 237, 5-8.

Mostaed, E., Hashempour, M., Fabrizi, A., Dellasega, D., Bestetti, M., Bonollo, F., & Vedani, M. (2014). Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications. Journal of the Mechanical Behavior of Biomedical Materials, 37, 307-322.

Gopi, K. R., Nayaka, H. S., & Sahu, S. (2018). Corrosion Behavior of ECAP-Processed AM90 Magnesium Alloy. Arabian Journal for Science & Engineering (Springer Science & Business Media BV), 43(9).

Gholami‐Kermanshahi, M., Neubert, V. D., Tavakoli, M., Pastorek, F., Smola, B., & Neubert, V. (2018). Effect of ECAP processing on corrosion behavior and mechanical properties of the ZFW MP magnesium alloy as a biodegradable implant material. Advanced Engineering Materials, 20(10), 1800121.

Naik, G. M., Narendranath, S., & Kumar, S. S. (2019). Effect of ECAP die angles on microstructure mechanical properties and corrosion behavior of AZ80 Mg alloy. Journal of Materials Engineering and Performance, 28(5), 2610-2619.

Witecka, A., Bogucka, A., Yamamoto, A., Máthis, K., Krajňák, T., Jaroszewicz, J., & Święszkowski, W. (2016). In vitro degradation of ZM21 magnesium alloy in simulated body fluids. Materials Science and Engineering: C, 65, 59-69.

Alateyah, A. I., Aljohani, T. A., Alawad, M. O., El-Hafez, H. A., Almutairi, A. N., Alharbi, E. S., ... & El-Garaihy, W. H. (2021). Improved Corrosion Behavior of AZ31 Alloy through ECAP Processing. Metals, 11(2), 363.

Song, D., Li, C., Liang, N., Yang, F., Jiang, J., Sun, J., ... & Ma, X. (2019). Simultaneously improving corrosion resistance and mechanical properties of a magnesium alloy via equal-channel angular pressing and post water annealing. Materials & Design, 166, 107621.

Yang, Z., Ma, A., Xu, B., Jiang, J., & Sun, J. (2021). Corrosion behavior of AZ91 Mg alloy with a heterogeneous structure produced by ECAP. Corrosion Science, 187, 109517.

Gzyl, M., Rosochowski, A., Boczkal, S., & Olejnik, L. (2015). The role of microstructure and texture in controlling mechanical properties of AZ31B magnesium alloy processed by I-ECAP. Materials Science and Engineering: A, 638, 20-29.

Seipp, S., Wagner, M. F. X., Hockauf, K., Schneider, I., Meyer, L. W., & Hockauf, M. (2012). Microstructure, crystallographic texture and mechanical properties of the magnesium alloy AZ31B after different routes of thermo-mechanical processing. International Journal of Plasticity, 35, 155-166.

Martynenko, N., Lukyanova, E., Serebryany, V., Prosvirnin, D., Terentiev, V., Raab, G., ... & Estrin, Y. (2019). Effect of equal channel angular pressing on structure, texture, mechanical and in-service properties of a biodegradable magnesium alloy. Materials Letters, 238, 218-221.

Stráská, J., Stráský, J., & Janeček, M. (2015). Activation Energy for Grain Growth of the Isochronally Annealed Ultrafine Grained Magnesium Alloy after Hot Extrusion and Equal-Channel Angular Pressing (EX-ECAP). Acta Physica Polonica, A., 128(4).

Stráská, J., Janeček, M., Čížek, J., Stráský, J., & Hadzima, B. (2014). Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP). Materials Characterization, 94, 69-79.

Tan, Y., Li, W., Hu, W., Shi, X., & Tian, L. (2019). The Effect of ECAP temperature on the microstructure and properties of a rolled rare earth magnesium alloy. Materials, 12(9), 1554.

Copyright (c) 2022 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.