PENGARUH THERMOMECHANICAL CONTROLLED PROCESSED (TMCP) TERHADAP PENGHALUSAN BUTIR DAN SIFAT MEKANIK PADUAN Cu-Zn 70/30[Influence of Thermomechanical Controlled Process on the Grain Size and Mechanical Properties of Cu-Zn 70/30]

Eka Febriyanti

Abstract

Paduan Cu-Zn 70/30 secara luas digunakan dalam banyak produk industri karena sifatnya yang unggul dan belum ada penggantinya. Beberapa karakteristik unggul yang dimiliki oleh paduan Cu-Zn 70/30 antara lain bersifat lunak, ulet, kuat, mudah dibentuk, dan sifat mekanisnya dapat dengan mudah ditingkatkan baik dengan pengerjaan dingin maupun solid solution alloying. Oleh karena itu, untuk memperoleh material paduan Cu-Zn 70/30 maka dilakukan riset baik berupa material baru maupun modifikasi dari jenis material yang sudah ada agar sesuai dengan kebutuhan industri. Untuk meminimalisir biaya produksi namun tetap menghasilkan sifat mekanis yang baik tanpa penambahan paduan maka dikembangkan metode penghalusan butir yang mengacu pada hukum Hall-Petch. Dengan metode penghalusan butir didapatkan sifat mekanis material yang tinggi terutama kekuatan luluh dan kekerasan. Salah satu alternatif proses fabrikasi untuk mengoptimalkan sifat mekanik paduan Cu-Zn 70/30 yaitu salah satunya dengan metode thermomechanical controlled process (TMCP). TMCP merupakan suatu proses perubahan bentuk suatu material dengan cara memberikan regangan plastis yang besar dan terkontrol terhadap material. TMCP dengan menggunakan variasi persentase deformasi sebanyak 32.25%, 35.48%, dan 38.7% dari penelitian canai hangat di suhu 500oC secara double pass reversible dilakukan pada pelat paduan Cu-Zn 70/30. Untuk paduan Cu-Zn 70/30 range pengerjaan canai hangat berada pada 0.4 s/d 0.6 Tm yaitu berkisar antara suhu 382oC-573oC. Dengan pengamatan metalografi maka didapat ukuran butir yang semakin menurun sebesar 29.53 μm di bagian tepi dan 33.47 μm di bagian tengah pada derajat deformasi 38.7%. Sedangkan dengan melakukan pengujian tarik menggunakan mesin uji tarik universal testing machine dapat dilihat bahwa pada material paduan Cu-Zn 70/30 dengan derajat deformasi 38.7% menghasilkan nilai ultimate tensile strength (UTS) sebesar 533 MPa, yield strength (YS) sebesar 435 MPa, dan persentase elongasi yang rendah sebesar 10%. Untuk hasil pengujian kekerasan menggunakan vickers hardness tester menghasilkan kekerasan sebesar 155 HV untuk bagian tepi dan 146 HV untuk bagian tengah pada derajat deformasi 38.7%.

 

Abstract

Cu-Zn 70/30 alloys are widely used in many industrial products because of its superior characteristic and
there is no substitute. To obtain Cu-Zn alloy material whose higher mechanical properties then it is done
research in the form of new material or modification material from existing types of materials to appropriate
with industry necessary. To minimize production cost, but it still produce good mechanical properties without
the addition of alloy then it is developed grain refinement method which refers to Hall-Petch law. One of
fabrication process alternative to optimize the mechanical properties of Cu-Zn 70/30 alloy namely thermo
mechanical controlled processed (TMCP) method. TMCP is conducted to Cu-Zn 70/30 alloy in various
deformation percentage at a level of 32.25% 35.48%, and 38.7% at 500oC by double pass reversible method.
For Cu-Zn 70/30 alloy the range suhu of TMCP is between 0.4-0.6 melting temperature or between 382°C-
573°C. By metallographic examination is obtained decreasing of grain size of 29.53 μm at the edges and of
33.47 μm in the central part sample on 38.7% deformation degree. Meanwhile, by tensile testing can be seen
that Cu-Zn 70/30 alloy material with 38.7% deformation degree produces ultimate tensile strength (UTS)
value of 533 MPa, yield strength (YS) value of 435 MPa, and elongation percentage value of 10%. The
hardness value obtained approximately around 155 HV to 146 HV in the edges to the middle part of material
on 38.7% deformation degree.

Keywords

Paduan Cu-Zn 70/30; Hall-petch; Butir halus; Sifat mekanis; TMCP; Cu-Zn 70-30 alloy; Hall-petch; Fine grain; Mechanical properties; TMCP

References

Callister Jr., William D. 2007, “An Introduction : Material Science and Engineering ,” John Wiley & Son Inc ., pp.373, 2007.

Azushima, A., R.Kopp, A.Korkohen, D.Y.Yang, F.Micari, G.D.Lahoti, “Severe Plastic Deformation (SPD) Process for Metals,” CIRP Annuals Manufacture Technology ., Vol.57, pp.716-735, 2008.

Joanne, N. 2000. What are TMCP (Thermo-mechanically Controlled Processed) Steel. TWI Ltd, 2000.

Yuqing, “Ultra-Fine Grained Steel,” Metallurgical Industry Press Trans. , 2009.

Yajima et al, “Extensive Application of TMCP-manufactured High Tensile Steel Plates to Ship Hulls and Offshore Structures,” Mitsubishi Heavy Industries Technical Review ., Vol. 24 No.1, 2007.

Akbari G. H., C. M. Sellars, “Microstructural Development During Warm Rolling of IF Steel,” Journal of Acta Metallurgica ., Vol. 45. No.12. pp. 5047- 5058, 2000.

Lange, K, “Plastic Deformation of Metals and Related Properti es. Handbook of Metal Forming ,” Mc.Graw-Hill. New York, 2000.

Dobatkin S., J. Zrnik, “Ultrafine-Grained Low Carbon Steels by Severe Plastic Deformation,” Journal of Metalurgija ., Vol. 47. pp.181-186, 2008.

Febriyanti, Eka, Dedi Priadi, Rini Riastuti, “Pengaruh Peningkatan Derajat Deformasi Hot rolling terhadap Morfologi Struktur Paduan Cu-Zn 70/30,” Prosiding SENAMM VIII ., pp.10-16 : Yogyakarta, 2015.

ASTM E3. Standard Guide for Preparation for Metallographic Specimens , 2013 .

ASTM E8. Standard Test Methods for Tension Testing of Metallic Materials, 2013.

ASTM E92. Standard Test Methods for Vickers Hardness of Metallic Materials, 2013.

F. J. Humphreys, and M.Hatherly, “Recrystallization and Related Annealing Phenomena,” Pergamon Press. , 2004. [14] Nestorovic S., Desimir Markovic, Ljubica Ivanic, “Influence of Degree of Deformation in Rolling on Anneal Hardening Effect of A Cast Copper Alloy,” Bulletin Material Science ., Vol. 26. No. 6. pp. 601–604, 2003.

Harold L.Walker, “Grain Size Produced by Recrystallization and Coalescene in Cold Rolled Cartridge Brass,” Buletin Series No. 359. University of Illinois ., Vol.43. No. 21, 2000.

C. Zheng, N. Xiao, “Microstructure Prediction of The Austenite Recrystallization During Multi-Pass Steel Strip Hot Rolling,” Computational Materials Science ., Vol. 44. pp.507-514, 2008.

Verlinden, Berth, Julian Driver, Indradev Samadjar & Roger D.Doherty, “Thermo- Mechanical Processed of Metallic Materials,” Pergamon Press Elsevier. Ltd. , Vol.11, 2007.

Charlie R.Brooks, “Heat Treatment. Structure and Properties of Non-Ferrous Alloys,” ASM International. , 2000.

Y.Liu, F.Zhu, et.al, “Effect of TMCP Parameters on Microstructure and Properties of Nb-Ti Microalloyed Steel,” Iron and Steel Institute of Japan International Journal ., Vol. 45. No.6. pp.851-857, 2005.

Edwin Scott, Jr, “ASA Materials Markket Digest,” pp.1-6, 2009.

Suryadi, Suryadi, R.A.M Napitupulu, Dedi Priadi, Amin Suhadi, E.S. Siradjh, “Effect of Equa Channel Angular Pressing and Post Heating on Microstructure and Hardness of Cu-Zn 70-30,” Journal of Advanced Material Research ., Vol.789. pp.373-378, 2013.

Zainul Huda, Ooi Soo Peng, “Computation of Critical % Deformation and Its Effect on The Microstructure and Hardness of Commercial Purity Aluminum”. Mems Technology and Devices ., Stanford Publishing Singapore, pp. 385-391, 2007.

William F.Hosford, Robert M.Caddell, “Metal forming Mechanics and Metallurgy,” Prentice Hall-Inc ., 2009

Copyright (c) 2016 Majalah Metalurgi

Refbacks

  • There are currently no refbacks.