THE EFFECT OF ECAP PROCESSING TO HARDNESS, SURFACE MORPHOLOGI, AND CORROSION RESISTANCE OF 6061 ALUMINIUM ALLOYS

Vinda Puspasari, I. Nyoman Gede P. A., Efendi Mabruri, Satrio Herbirowo, Edy Priyanto Utomo

Abstract

Al-Mg-Si alloys (6xxx) has been widely used as structural materials in building and vehicles because of its excellent strength and corrosion resistance. The improvement of fine grain microstructure which can increase mechanical and physical properties become an interesting field in recent research.. Equal channel angular press is the most promising method to apply severe plastic deformation (SPD) which can produce ultra-fine grain in the bulk material without residual porosity. This study presents some experiments results on the effect of ECAP number of passes variation to the hardness, microstructure, and corrosion behaviour of Al 6061 alloys. The samples were annealed in the furnace with argon gas environment at 530°C for 4 hours and then immersed in liquid nitrogen for 5 minutes before ECAP process. The ECAP process was done with Bc route using dies with 120° of internal channel angle and pass variation of 1, 2, 3, and 4. The optimum hardness is 107.58 HRB in Al 6061 samples with 3 passes of ECAP. The increasing ECAP number of passes leads to a significant grain size reduction from 0 way pass, the grain size is around 10 µm, while for a 4 way pass, the grain size is around 2.5 µm. The corrosion resistance of Al 6061 alloys increased with the increasing number of passes in ECAP process.

Keywords

Al-Mg-Si alloys, ECAP, cryogenic, hardness, microstructure, corrosion resistance

Full Text:

PDF

References

J. Ma, J. Wen, Q. Li, and Q. Zhang, “Electrochemical polarization and corrosion behavior of Al-Zn-In based alloy in acidity and alkalinity solutions,” Int. J. Hydrogen Energy, vol. 38, no. 34, pp. 14896–14902, 2013, doi: 10.1016/j.ijhydene.2013.09.046.

S. Y. Chang, K. S. Lee, S. H. Choi, and D. H. Shin, “Effect of ECAP on microstructure and mechanical properties of a commercial 6061 Al alloy produced by powder metallurgy,” J. Alloys Compd., vol. 354, no. 1–2, pp. 216–220, 2003, doi: 10.1016/S0925-8388(03)00008-2.

V. Shrivastava, G. K. Gupta, and I. B. Singh, “Heat treatment effect on the microstructure and corrosion behavior of Al-6061 alloy with influence of α-nanoalumina reinforcement in 3.5% NaCl solution,” J. Alloys Compd., vol. 775, pp. 628–638, 2019, doi: 10.1016/j.jallcom.2018.10.111.

M. A. Agwa, M. N. Ali, and A. E. Al-Shorbagy, “Optimum processing parameters for equal channel angular pressing,” Mech. Mater., vol. 100, pp. 1–11, 2016, doi: 10.1016/j.mechmat.2016.06.003.

A. I. Alateyah et al., “Improved corrosion behavior of AZ31 alloy through ECAP processing,” Metals (Basel)., vol. 11, no. 2, pp. 1–19, 2021, doi: 10.3390/met11020363.

E. Mostaed et al., “Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications,” J. Mech. Behav. Biomed. Mater., vol. 37, pp. 307–322, 2014, doi: 10.1016/j.jmbbm.2014.05.024.

G. M. Naik, S. Narendranath, and S. S. S. Kumar, “Effect of ECAP Die Angles on Microstructure Mechanical Properties and Corrosion Behavior of AZ80 Mg Alloy,” J. Mater. Eng. Perform., vol. 28, no. 5, pp. 2610–2619, 2019, doi: 10.1007/s11665-019-04080-5.

H. Kaya, M. Uçar, A. Cengiz, R. Samur, D. Özyürek, and A. Çalişkan, “Novel molding technique for ECAP process and effects on hardness of AA7075,” Mechanika, vol. 20, no. 1, pp. 5–10, 2014, doi: 10.5755/j01.mech.20.1.4207.

M. Cabibbo, “A TEM Kikuchi pattern study of ECAP AA1200 via routes A, C, BC,” Mater. Charact., vol. 61, no. 6, pp. 613–625, 2010, doi: 10.1016/j.matchar.2010.03.007.

X. Wang, M. Nie, C. T. Wang, S. C. Wang, and N. Gao, “Microhardness and corrosion properties of hypoeutectic Al-7Si alloy processed by high-pressure torsion,” Mater. Des., vol. 83, pp. 193–202, 2015, doi: 10.1016/j.matdes.2015.06.018.

E. Mabruri, I. N. Gede, P. A. Edy, and P. Utomo, “STUDI EQUAL CHANNEL ANGULAR PRESSING ( ECAP ) SUHU NITROGEN CAIR PADA PADUAN Al-Mg-Si ( Al 6061 ),” Maj. Metal., vol. 29, no. 3, pp. 215–222, 2014.

T. Dursun and C. Soutis, “Recent developments in advanced aircraft aluminium alloys,” Mater. Des., vol. 56, pp. 862–871, 2014, doi: 10.1016/j.matdes.2013.12.002.

E. Cerri, P. P. De Marco, and P. Leo, “FEM and metallurgical analysis of modified 6082 aluminium alloys processed by multipass ECAP: Influence of material properties and different process settings on induced plastic strain,” J. Mater. Process. Technol., vol. 209, no. 3, pp. 1550–1564, 2009, doi: 10.1016/j.jmatprotec.2008.04.013.

W. Huo, L. Hou, H. Cui, L. Zhuang, and J. Zhang, “Fine-grained AA 7075 processed by different thermo-mechanical processings,” Mater. Sci. Eng. A, vol. 618, pp. 244–253, 2014, doi: 10.1016/j.msea.2014.09.026.

V. Puspasari, M. A. Prasetyo, J. Velix, M. S. Anwar, S. Herbirowo, and E. Mabruri, “P ENGARUH A NNEALING T ERHADAP K EKERASAN DAN S TRUKTUR M IKRO B AJA T AHAN K ARAT AISI 410-3M O -3Ni,” Maj. Metal., vol. 35, no. 2, pp. 75–82, 2020.

V. Puspasari, R. Suratman, and A. R. Setiawan, “Prosiding Seminar Nasional Metalurgi & Material (Senamm) X 2017,” in Fabrication Of Aluminium Composite AA 354.0 (Al-Si-Cu) With Al2O3 Particle Reinforce Using Stir Casting Method Vinda, 2017, pp. 515–523.

P. N. Rao, D. Singh, and R. Jayaganthan, “Mechanical properties and microstructural evolution of Al 6061 alloy processed by multidirectional forging at liquid nitrogen temperature,” Mater. Des., vol. 56, pp. 97–104, 2014, doi: 10.1016/j.matdes.2013.10.045.

S. Fritsch and M. F. X. Wagner, “On the effect of natural aging prior to low temperature ECAP of a high-strength aluminum alloy,” Metals (Basel)., vol. 8, no. 1, 2018, doi: 10.3390/met8010063.

Z. S. Zahari, D. N. Awang Sh’Ri, M. A. H. Abu Hassan, and W. S. Wan Harun, “Effect of ECAP die angle to the microstructure and mechanical properties of bulk nanostructured Al-6061,” IOP Conf. Ser. Mater. Sci. Eng., vol. 469, no. 1, 2019, doi: 10.1088/1757-899X/469/1/012054.

M. Orłowska, E. Ura-Bińczyk, L. Olejnik, and M. Lewandowska, “The effect of grain size and grain boundary misorientation on the corrosion resistance of commercially pure aluminium,” Corros. Sci., vol. 148, pp. 57–70, 2019, doi: 10.1016/j.corsci.2018.11.035.

E. Mabruri, H. M. Sigit, M. A. Prasetyo, A. Nikitasari, and A. De Fretes, “Pitting Corrosion Resistance of CA6NM and 410 Martensitic Stainless Steels in Various Environments,” in IOP Conference Series: Materials Science and Engineering 858, 2020, p. 012049, doi: 10.1088/1757-899X/858/1/012049.

M. I. Abd El Aal and M. M. Sadawy, “Influence of ECAP as grain refinement technique on microstructure evolution, mechanical properties and corrosion behavior of pure aluminum,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 25, no. 12, pp. 3865–3876, 2015, doi: 10.1016/S1003-6326(15)64034-1.

A. Mahdy and M. M. Sadawy, “Effect of grain refiner Al-5Ti-1B on the Corrosion and Electrochemical Behavior of Al-6061 in 3.5wt. % NaCl solution,” Metall, vol. 67, no. 9, pp. 397–401, 2013.

Copyright (c) 2021 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.