The Effect of Roasting Prior to The Leaching Process of Alkalinized Ferronickel Slag Followed by Precipitation Process

Wahyu Mayangsari, Agus Budi Prasetyo, Eni Febriana, Januar Irawan, Rudi Subagja, Florentinus Firdiyono, Johny Wahyuadi Soedarsono

Abstract

Terak feronikel dihasilkan sebagai produk samping dari produksi feronikel. terak feronikel mempunyai potensi sebagai bahan baku beberapa komponen berharga karena komposisinya melalui proses bertahap. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh dari proses pemanggangan campuran terak feronikel dan Na2CO3 sebelum leaching air panas dan presipitasi untuk menghasilkan endapan silika. Proses pemanggangan terak feronikel dengan penambahan Na2CO3 telah dilakukan untuk pembentukan natrium silikat. Kemudian dilarutkan melalui proses pelindian menggunakan air panas 90 ° C selama 120 menit. Endapan silika didapatkan dengan proses presipitasi sodium silikat terlarut diikuti dengan pemeraman selama tiga hari. Berdasarkan hasilnya, pemanggangan menyebabkan perubahan komposisi yang mempengaruhi persen pelindian dan perolehan silika. Reaksi terjadi dari permukaan ke inti yang dibuktikan dengan pengecilan ukuran residu pelindian dari RAF nya. Natrium silikat dalam bentuk Na4SiO4  diketahui terlarut Ketika pelindian air dilakukan. Pengendapan dan pemeraman larutan natrium silikat telah menghasilkan endapan silika dengan ukuran partikel lebih dari 100 mm. pemanggangan pada 1000 ° C selama 240 menit menghasilkan perolehan silika tertinggi.

Keywords

feronikel; terak; pemanggangan; pelindian; pengendapan; silika

Full Text:

PDF

References

S. S. Kang, K. Park, and D. Kim, “Potential Soil Contamination in Areas Where Ferronickel Slag Is Used for Reclamation Work,” Materials, vol. 7, no. March 2016, pp. 7157–7172, 2014.

C. Sagadin and S. Luidold, “Melting Behaviour of Ferronickel Slags Melting Behaviour of Ferronickel Slags,” The journal of the Minerals, Metals & Materials Society, no. 07 October, 2016.

Y. Cheol and S. Choi, “Alkali – silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions,” vol. 99, pp. 279–281, 2015.

A. K. Saha, M. N. N. Khan, and P. K. Sarker, “Value added utilization of by-product electric furnace ferronickel slag as construction materials : A review,” Resources, Conservation & Recycling, vol. 134, no. December 2017, pp. 10–24, 2018.

A. B. Prasetyo, A. Maksum, J. W. Soedarsono1, and F. Firdiyono, “Thermal characteristics of ferronickel slag on roasting process with addition of sodium carbonate ( Na 2 CO 3 ),” in International Seminar on Metallurgy and Materials, 2019.

A. K. Saha and P. K. Sarker, “Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars,” Construction and Building Materials, vol. 123, pp. 135–142, 2016.

M. A. Rahman, P. K. Sarker, F. Uddin, A. Shaikh, and A. K. Saha, “Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag,” Construction and Building Materials, vol. 140, pp. 194–202, 2017.

Y. Huang, Q. Wang, and M. Shi, “Characteristics and reactivity of ferronickel slag powder,” Construction and Building Materials, vol. 156, pp. 773–789, 2017.

A. Qi, X. Liu, Z. Wang, and Z. Chen, “Mechanical properties of the concrete containing ferronickel slag and blast furnace slag powder,” vol. 231, 2020.

J. Sun, J. Feng, and Z. Chen, “Effect of ferronickel slag as fine aggregate on properties of concrete,” Construction and Building Materials, vol. 206, pp. 201–209, 2019.

D. Fang, J. Xue, and L. Xuan, “Recycling SiO2 and Al2O3from the Laterite Nickel Slag in Molten Sodium Hydroxides,” in 9th International Symposium on High-Temperature Metallurgical Processing, The Minerals, Metals & Materials Series, 2018, pp. 245–257.

F. Gu et al., “Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching,” Journal of Hazardous Materials, vol. 374, no. February, pp. 83–91, 2019.

A. B. Prasetyo et al., “Reverse Leaching of Magnesium from Ferronickel Slag Using Alkali,” Eastern-European Journal of Enterprise Technologies - Materials Science, vol. 12, pp. 6–14, 2020.

W. Mayangsari, I. N. Avifah, A. B. Prasetyo, E. Febriana, and A. Maksum, “DECOMPOSITION OF FERRONICKEL SLAG THROUGH ALKALI FUSION IN THE ROASTING PROCESS,” Eastern-European Journal of Enterprise Technologie, vol. 2(6(110)), no. 30 April 2021, pp. 44–51, 2021.

D. Fang, J. Xue, and L. Xuan, “Recycling SiO2 and Al2O3 from the Laterite Nickel Slag in Molten Sodium Hydroxides,” in 9th International Symposium on High-Temperature Metallurgical Processing, The Minerals, Metals & Materials Series, 2018, pp. 245–257.

Kirk-Othmer, Encyclopedia of Chemical Technology, 4th edition, vol. 1. John Willey & Sons Inc., USA, 1998.

Copyright (c) 2021 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.