Deposisi Kalsium Karbonat pada Ti-6Al-6Mo[CALCIUM CARBONATE DEPOSITION ON TI-6AL-6MO]

Made Subekti Dwijaya, Muhammad Satrio Utomo, Syafira Nur Ajeng Ramadhanti, Fendy Rokhmanto, Ibrahim Purawiardi, Galih Senopati, Aprilia Erryani, Inti Mulyati

Abstract

Osseointegration is one of important property in development of implant materials for orthopedic applications.  While biocompatible metallic materials such as titanium alloys should already have adequate biocompatibility properties as implant materials, their osseointegration property could be further improved by bioceramic coating. Calcium carbonate (CaCO3) and hydroxyapatite are two major bioceramics in bones that can be utilized to improve the osseointegration property of metallic implant materials. Current challenge on bioceramic coating of metallic implant materials is to obtain coating method that is facile and economically feasible for implementation in the industry. Here we propose a simple and straightforward method to deposit calcium carbonate on Ti-6Al-6Mo. We utilize two common biomimetic solutions, the phosphate buffer saline (Dulbecco’s PBS) and supersaturated calcification solution (SCS) to induce the calcium carbonate formation on the Ti-6Al-6Mo surface. Microstructural and elemental observations by scanning electron microscope (SEM) – energy dispersive x-ray (EDX) has shown the presence of calcium carbonate on the surface of the Ti-6Al-6Mo immersed in SCS. Moreover, the crystallography analysis by x-ray diffraction (XRD) also confirmed the formation of calcium carbonate on the surface of Ti-6Al-6Mo. We also studied the proposed method on pure Ti (>95%) as comparison and similar outcomes were also observed. The effect on duration of immersion was also accounted in current setting. The outcomes of immersion duration for 7 and 10 days were not significantly different.

 

ABSTRAK

Osseointegrasi adalah salah satu properti penting dalam pengembangan material untuk aplikasi implan tulang. Meskipun material logam biokompatibel seperti paduan titanium sudah memiliki properti biokompatibel bawaan yang sudah mencukupi sebagai material implan tulang, sifat osseointegrasi -nya masih dapat ditingkatkan dengan pelapisan biokeramik. Kalsium karbonat (CaCO3) dan hidroksiapatit adalah dua biokeramik utama pada tulang yang dapat dimanfaatkan untuk meningkatkan sifat osseointegrasi pada material implan. Tantangan saat ini pada pelapisan biokeramik pada material implant adalah memperoleh metode pelapisan yang mudah diterapkan dan ekonomis untuk selanjutnya diterapkan di industri. Pada penelitian ini dilakukan sebuah metode yang sederhana untuk mendeposisi kalsium karbonat pada permukaan Ti-6Al-6Mo. Kami menggunakan dua larutan biomimetik yang sudah secara luas digunakan, yaitu Dulbecco’s PBS (phosphate buffer saline) dan SCS (supersaturated calcification solution) untuk membuat pembentukan kalsium karbonat pada permukaan Ti-6Al-6Mo. Pengamatan struktur mikro dan elemental dengan scanning electron microscope (SEM) - energy dispersive x-ray (EDX) menunjukkan keberadaan deposit kalsium karbonat pada permukaan Ti-6Al-6Mo. Lebih lanjut, analisa kristalografi dengan difraksi x-ray (XRD) juga menguatkan keberadaan deposit kalsium karbonat pada permukaan Ti-6Al-6Mo. Kami juga mempelajari metode yang diajukan pada Ti murni (>95%) sebagai perbandingan dan diperoleh hasil yang serupa. Pengaruh durasi perendaman juga diamati dalam penelitian ini. Hasil dari imersi dengan durasi 7 dan 10 hari tidak menunjukkan perbedaan yang signifikan

Keywords

kalsium karbonat, implan, supersaturated calcification solution (SCS), Ti-6Al-6Mo; calcium carbonate, implant, supersaturated calcification solution (SCS), Ti-6Al-6Mo

Full Text:

PDF

References

A. J. Rahyussalim, S. Supriadi, A. F. Marsetio, P. M. Pribadi, and B. Suharno, “The potential of carbonate apatite as an alternative bone substitute material,” Med. J. Indones., vol. 28, no. 1, pp. 92–97, 2019. DOI: 10.13181/mji.v28i1.2681

E. B. Ansar, K. Ravikumar, S. S. Babu, F. B. Fernandez, M. Komath, and B. Basu, “Materials Science & Engineering C Inducing apatite pre-layer on titanium surface through hydrothermal processing for osseointegration,” Mater. Sci. Eng. C, vol. 105, no. March, p. 110019, 2019. DOI: 10.1016/j.msec.2019.110019

J. Faure, A. Balamurugan, H. Benhayoune, P. Torres, G. Balossier, and J. M. F. Ferreira, “Morphological and chemical characterisation of biomimetic bone like apatite formation on alkali treated Ti6Al4V titanium alloy,” Mater. Sci. Eng. C, vol. 29, no. 4, pp. 1252–1257, 2009. DOI: 10.1016/j.msec.2008.09.047

T. C. Lee, P. Koshy, H. Z. Abdullah, and M. I. Idris, “Surface & Coatings Technology Precipitation of bone-like apatite on anodised titanium in simulated body fl uid under UV irradiation,” Surf. Coat. Technol., pp. 1–9, 2015. DOI: 10.1016/j.surfcoat.2015.11.010

Y. Liu, Y. Zhou, T. Jiang, Y. De Liang, Z. Zhang, and Y. N. Wang, “Evaluation of the osseointegration of dental implants coated with calcium carbonate: An animal study,” Int. J. Oral Sci., vol. 9, no. 3, pp. 133–138, 2017. DOI: 10.1038/ijos.2017.13

H. Yamamoto, Y. Shibata, T. Tachikawa, and T. Miyazaki, “In vivo performance of two different hydroxyapatite coatings on titanium prepared by discharging in electrolytes,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 78, no. 1, pp. 211–214, 2006. DOI: 10.1002/jbm.b.30477

X. Li et al., “Calcium carbonate nanoparticles promote osteogenesis compared to adipogenesis in human bone-marrow mesenchymal stem cells,” Prog. Nat. Sci. Mater. Int., vol. 28, no. 5, pp. 598–608, 2018. DOI: 10.1016/j.pnsc.2018.09.004

R. Shi, K. Hayashi, and K. Ishikawa, “Rapid Osseointegration Bestowed by Carbonate Apatite Coating of Rough Titanium,” Adv. Mater. Interfaces, vol. 7, no. 18, pp. 1–11, 2020. DOI: 10.1002/admi.202000636.

C. Sutowo, F. Rokhmanto, and G. Senopati, “Proses Perlakuan Termomekanis pada Paduan α/β Ti-6Al-6Mo sebagai Alternatif Baru untuk Aplikasi Biomedis,” Widyariset, vol. 3, no. 1, pp. 47–54, 2017. DOI: 10.14203/widyariset.3.1.2017.47-54

I. Kartika, R. Werdaningsih, Alfirano, F. Rokhmanto, and Y. N. Thaha, “An investigation of α and α’ phases intensity and hardness of Ti-6Al-6Mo implant alloy influenced by temperature of solution treatment and quenching media,” AIP Conf. Proc., vol. 2120, 2019. DOI: 10.1063/1.5115685

F. Rokhmanto, I. N. G. P. Astawa, E. P. Utomo, D. P. Malau, R. I. Purawiardi, and J. Triwardono, “Characteristic the α phase in Ti-6Al-6Mo implant alloy after various pre-heating time of heavy hot rolling process,” Proc. 3RD Int. Semin. Metall. Mater. Explor. New Innov. Metall. Mater., vol. 2232, no. April, p. 070003, 2020. DOI: 10.1063/5.0001761

G. Ciobanu, G. Carja, and O. Ciobanu, “Structural characterization of hydroxyapatite layer coatings on titanium supports,” vol. 202, pp. 2467–2470, 2008. DOI: :10.1016/j.surfcoat.2007.11.038

J. Forsgren, F. Svahn, T. Jarmar, and H. Engqvist, “Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates,” Acta Biomater., vol. 3, no. 6, pp. 980–984, 2007. DOI: 10.1016/j.actbio.2007.03.006

D. K. Pattanayak, T. Kawai, T. Matsushita, H. Takadama, T. Nakamura, and T. Kokubo, “Effect of HCl concentrations on apatite-forming ability of NaOH-HCl- and heat-treated titanium metal,” J. Mater. Sci. Mater. Med., vol. 20, no. 12, pp. 2401–2411, 2009. DOI: 10.1007/s10856-009-3815-0

L. Jonášová, F. A. Müller, A. Helebrant, J. Strnad, and P. Greil, “Biomimetic apatite formation on chemically treated titanium,” Biomaterials, vol. 25, no. 7–8, pp. 1187–1194, 2004. DOI: :10.1016/j.biomaterials.2003.08.009

Copyright (c) 2021 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.