SINTESA AL2O3 DARI SERBUK BOEHMITE MENGGUNAKAN TEKNIK SPARK PLASMA SINTERING (SPS): STUDI TRANSFORMASI FASA, MIKROSTRUKTUR DAN KEKERASAN

Diastati Puspita Ning Ayu, Bambang Hermanto, Arif Tjahjono, Toto Sudiro

Abstract

Pada studi ini, telah disintesa bulk alumina dari serbuk boehmite menggunakan teknik spark plasma sintering (SPS) pada temperatur 650oC, 750oC, 950oC, 1100oC, 1200oC dan 1300oC. Transformasi fasa dari boehmite menjadi α-Al2O3, mikrostruktur dan sifat mekaniknya dipelajari pada rentang temperatur 650-1300oC. Struktur fasa yang terbentuk dianalisa dengan X-ray diffractometer (XRD), dan nilai crystallite size, lattice strain serta dislocation density di hitung berdasarkan hasil analisa puncak difraksi XRD. Morfologi permukaan sampel diobservasi dengan menggunakan alat optical micoscope (OM). Karakteristik mekanik sampel yang terdiri atas nilai kerapatan massa dan kekerasan sampel masing-masing diukur menggunakan prinsip Archimedes dan vickers microhardness. Hasil XRD menunjukkan bahwa -alumina mulai terbentuk pada temperatur 1100oC, namun masih terdapat struktur lain yaitu -alumina. Struktur -alumina terbentuk sempurna pada temperatur 1300oC. Hasil perhitungan menunjukkan bahwa nilai crystallite size berbanding terbalik dengan nilai lattice strain dan dislocation density. Analisa mikrostruktur dengan menggunakan OM menunjukkan bahwa pada temperatur 650oC dan 750oC sampel belum homogen. Nilai kekerasan dan kerapatan massa sampel meningkat seiring dengan kenaikan temperatur sintering.

Keywords

boehmite, Al2O3, spark plasma sintering, transformasi fasa, mikrostruktur, sifat mekanik

Full Text:

PDF

References

Daftar pustaka

X. Jin, L. Gao and J. Sun. “Highly Transparent Alumina Spark Plasma Sintered from Common-Grade Commercial Powder: The Effect of Powder Treatment. J. Am. Ceram. Oc., Vol. 93 [5], pp.1232-1236, 2010.

K. A. Matori, L. C. Wah, M. Hashim, I. Ismail and M. H. M. Zaid. “Phase Transformations of α-Alumina Made from Waste Aluminum via a Precipitation Technique”, Int. J. Mol. Sci., Vol. 13, pp. 16812-16821, 2012.

S. Lamouri, M. Hamidouche, N. Bouaouadja, H. Belhouchet, V. Garnier, G. Fantozzi and J. F. Trelkat. “Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification”, Boletín De La Sociedad Española De Cerámica Y Vidrio, Vol. 56, pp. 47-54, 2017.

T. Shirai, H. Watanbe, M. Fuji and M. Takahashi. “Structural Properties and Surface Characteristics on Aluminum Oxide Powders”, Vol. 9, pp. 23-31, 2009.

M. V. Glazoff and Tedd E. Lister. Transition of Spent Nuclear Fuel to Dry Storage. Milestone1: Task 1.2 Modeling activities concerning aluminum spent nuclear fuel cladding integrity. 2018. http://www.inl.gov

K.B. Gan, C.I Madsen and G.J. Hockridgea, “In situ X-ray diffraction of the transformation of gibbsite to α-alumina through calcination: effect of particle size and heating rate”, J. Appl. Cryst., Vol. 42, pp. 697-705, 2009.

H. Belhouchet, M. Hamidouche, Bouaouadja, V. Garnier and G.Fantozzi, “Crystallization kinetics of α –alumina and mullite-zirconia in boehmite and zircon mixture”, J. Mater. Sci. Eng. A., Vol. 3 (12), pp. 814-819, 2013.

P. Palmero and M. Lombardi, “Effect of heating rate on phase and microstructuraal evolution”, Int. J. Appl. Ceram. Technol., Vol. 6, pp. 420-430, 2009.

Spark Plasma Sintering Fuji-SPS. Internet: www.fuji-sps.sakura.ne.jp/e¬¬_index¬_shtml [Accessed: 14 January 2020]

T. Sudiro, A. I. J. Hia, Ciswandi, D. Aryanto, B. Hermanto, A.S. Wismogroho and P. Sebayang. “High Temperature cyclic oxidation resistance of 50Cr-50Al coatings mecahnically alloyed on low carbon steel”, Journal of Alloys and Compounds, Vol. 732, pp. 655-665, 2018.

K. Venkateswarlu, M. Sandhyarani, T. A. Mellaippan and N. Rameshbabu. “Estimation of Crystallite Size, Lattice Strain and Dislocation Density of Nanocrystalline Carbonate Substituted Hydroxyapatite by X-ray Peak Variance Analysis”. Procedia Materials Science, Vol. 5, pp. 212-221, 2014.

W. N. W. Jusoh, K. Amin Matori, M. H. M. Zaid, N. Zainuddin, M. Z. A. Khiri, N. A. A. Rahman. R. A. Jalil and E. Kul. “Effect of sintering temperature on physical and structural properties of Alumino-Silicate-Flouride glass ceramics fabricated from clam shell and soda lime silicate glass”. Results in Physics, Vol. 12, pp. 1909-1914, 2019.

S. Kwon and G. L. Messing. “Constrained densification in boehmite-alumina mixtures for the fabrication of porous alumina ceramics”, Journal of Materials Science, Vol. 33, pp. 913-921, 1998.

R. Ridel and I. W. Chen: Ceramics Science and Technology Volume 3: Synthesis and Processing. Weinheim, Germany: Wiley-VCH Verlag & Co. KgaA, Boschstr, pp. 198-203, 2012.

Chapter 2: Structure of Alumina Phases. Internet:https://www.google.com/url?sa=t&source=web&rct=j&url=http://shodhganga.inflibnet.ac.in/jspui/bitstream/10603/176524/7/07_chapter%25202.pdf&ved=2ahUKEwi0u5qx1ILqAhUxjuYKHVnjBOMQFjAHegQIBBAB&usg=AOvVaw1ApYLxXO9nJMHEL7e8sIQS [Accessed: 15 June 2020].

E. Yalamac, A. Trapani and S. Akkurt. “Sintering and microstructural investigation of gamma-alpha alumina powders”, Engineering Science and Technology, an International Journal, Vol. 17, Issue 1, pp. 2-7, 2014.

L. K. Singh, A. Bhadauria, S. Jana and T. Laha. “Effect of Sintering Temperature and Heating Rate on Crystallite Size, Densification Behaviour and Mechanical Properties of Al-MWCNT Nanocomposite Consolidated via Spark Plasma Sintering”, Acta Metallurgical Sinica, Vol. 31 (10), pp. 1019-1030, 2018.

H. T. Kim, D. W. Choi, J. S. Kim, Y. S. Kwon, H. S. Kwon and E. R. Baek. “Spark Plasma Sintering Behavior of Biderless WC Powders”. Journal of Korean Powder Metallurgy Insitute, Vol. 10, No. 3, pp. 176-180, 2003.

Copyright (c) 2020 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.