STUDI PENAMBAHAN UNSUR Ca PADA PADUAN BINER Mg-Ca TERHADAP PEMBENTUKAN FASA DAN KOROSI IN-VITRO UNTUK APLIKASI IMPLAN MAMPU LURUH [Study of Calcium Addition in Mg-Ca Binary Alloy in Phase Transformation and in- Vitro Corrosion For Biodegradable Implant]
Abstract
Paduan magnesium merupakan paduan yang tengah dikembangkan untuk aplikasi biomedis karena memiliki sifat mampu luruh dan juga biokompatibel. Pada penelitian kali ini dikembangan paduan logam binner Mg-Ca dengan komposisi 1%berat, 4%berat, dan 7%berat Ca yang dibuat dengan teknik metalurgi serbuk untuk mengetahui pengaruh penambahan unsur Ca terhadap fasa yang terbentuk dan ketahanan korosi paduan. Evaluasi fasa yang terbentuk dilakukan dengan menggunakan x-ray diffractometry (XRD) dan uji korosi secara elektrokimia yang dievaluasi melalui in-vitro dengan polarisasi potensiodinamik dalam larutan Hank’s pada temperatur ruang. Penambahan paduan Ca menyebabkan terbentuknya formasi fasa Mg2Ca yang secara sistematik meningkatkan laju korosi dan menurunkan potensial korosi paduan Mg-Ca. Hasil uji XRD menunjukkan fasa Mg2Ca terbentuk pada paduan Mg-7Ca. Hasil uji elektrokimia juga mengindikasikan bahwa laju korosi meningkat dan potensial korosi menurun dengan penambahan unsur Ca akibat terbentuknya fasa Mg2Ca yang lebih katodik. Fenomena tersebut di atas mengindikasikan bahwa Mg-1Ca merupakan kandidat serta paduan optimal yang dapat digunakan sebagai bahan baku pembuatan produk implan mampu luruh.
Abstract
Magnesium alloy is currently being developed for biomedical devices application due to its biodegradable
and biocompatible properties. In this study, Mg- Ca (1% wt, 4%wt, and 7%wt Ca) alloys have been been
prepared through powder metallurgy process to study the effect of Ca addition to the phase transformation
and the corrosion properties. Phase transformation were characterized through X-Ray Diffractometry (XRD).
Meanwhile, the corrosion properties were evaluated in- vitro by means of polarization potentiodinamic in
Hank’s solution. The electrochemical tests were carried out at room temperature using a corrosion
measurement system. It was shown that Ca addition affect the formation of Mg2Ca phase which
systematically could increase the corrosion rate and reduce potential corrosion of Mg- Ca alloy. From XRD
evaluation, it can be seen that Mg2Ca phase were formed at Mg-7Ca alloy. The electrochemical testing also
indicated the increasing of corrosion rate and the reduction of potential corrosion along with Ca addition
were caused by formation of Mg2Ca phase which was more cathodic. This phenomena had shown that Mg-1
Ca alloy could be studied further as a raw material for biodegradable implant application.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Chang, L. dkk, “Formation of dicalcium phosphate dihydrate on magnesium alloy by micro-arc oxidation coupled with hydrothermal treatment,” Corrosion Science. , Vol. 72(0), pp. 118-124, 2013.
Rosemann, P. dkk, “Short and long term degradation behaviour of Mg–1Ca magnesium alloys and protective coatings based on plasma-chemical oxidation and biodegradable polymer coating in synthetic body fluid ,” Materials and Corrosion. , Vol. 64(8), pp. 714-722, 2013. [3] Brar, H.S. dkk, “A study of a biodegradable Mg–3Sc–3Y alloy and the effect of self-passivation on the in vitro degradation,” Acta Biomaterialia. , Vol. 9(2), pp. 5331-5340, 2013.
Song, G, “Control of biodegradation of biocompatable magnesium alloys ,”Corrosion Science. , Vol. 49(4), pp. 1696-1701, 2007.
Zhang, E. dkk, “Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application ,”Acta Biomaterialia. , Vol. 6(5), pp. 1756-1762, 2010.
Witte, F. dkk, “Biodegradable magnesium–hydroxyapatite metal matrix composites ,”Biomaterials. , Vol. 28(13), pp. 2163-2174, 2007.
Wang, L. dkk, “Corrosion and self- healing behaviour of AZ91D magnesium alloy in ethylene glycol/water solutions ,”Materials and Corrosion. , Vol. 63(8), pp. 713-719, 2012. [8] Li, J.G. dkk, “Corrosion characterization of microarc oxidation coatings formed on Mg–7Li alloy ,”Materials and Corrosion. , Vol. 64(5), pp. 426-432, 2013.
Wang, Y.Q. dkk, “The effect of Ca on corrosion behavior of heat-treated Mg– Al–Zn alloy ,”Materials and Corrosion. , Vol. 63(6), pp. 497-504, 2012.
Hallab, N.J. dkk, “Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts ,” Journal of Biomedical Materials Research. , Vol. 60(3), pp. 420-433, 2002.
Song, G.L. dkk, “Corrosion Mechanisms of Magnesium Alloys ,” Advanced Engineering Materials. , Vol. 1(1), pp. 11- 33, 1999.
Li, Z. dkk, “The development of binary Mg–Ca alloys for use as biodegradable materials within bone ,”Biomaterials. , Vol. 29(10), pp. 1329-1344, 2009.
Ika Kartika, Bambang Sriyono, Dhyah Annur, M. Ikhlasul Amal, “Pembuatan Master Alloy Mg-Ca Sebagai Bahan Baku Paduan Metal Selular Mg-Zn-Ca,” Prosiding Seminar Material Metalurgi ., hal 199-203, 2014.
Zhang, S. dkk, “Research on an Mg–Zn alloy as a degradable biomaterial ,”Acta Biomaterialia ., Vol. 6(2), pp. 626-640, 2010.
Xu, L. dkk, “In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application ,” Journal of Biomedical Materials Research Part A ., Vol. 83A(3), pp. 703-711, 2007. [16] Li, N. dkk, “Novel Magnesium Alloys Developed for Biomedical Application: A Review ,” Journal of Materials Science & Technology. , Vol. 29(6), pp. 489-502, 2013.
Shi, Y. dkk, “MAO-DCPD composite coating on Mg alloy for degradable implant applications ,” Materials Letters. , Vol. 65(14), pp. 2201-2204, 2011.
Lee, C. dkk, “Effect of galvanic corrosion between precipitate and matrix on corrosion behavior of As-cast magnesium-aluminum alloys ,” Metals and Materials. , Vol. 6(4), pp. 351-358, 2000.
Kuwahara, H. dkk, “Precipitation of Magnesium Apatite on Pure Magnesium Surface during Immersing in Hank’s Solution ,” Materials Transactions. , Vol. 42(7), pp. 1317-1321, 2001.
Wolff, M. dkk, “Sintering of Magnesium ,” Advanced Engineering Materials. , Vol. 12(9), pp. 829-836, 2010.
Seyedraoufi, Z.S, “Synthesis, microstructure and mechanical properties of porous Mg Zn scaffolds ,” Journal of the Mechanical Behavior of Biomedical Materials. , Vol. 21(0), pp. 1-8, 2013.
Harandi, S.E. dkk, “Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg-Ca binary alloy ,” Materials Research. , Vol. 16, pp. 11-18, 2013.
Piatti, G. dkk, “Superplasticity of the Mg- Ca eutectic alloy ,” Journal of Materials Science Letters. , Vol. 3(1), pp. 60-64, 1984.
Popova, S.N. dkk, “Determination of Corrosion Properties of Lacquered Tinplate in Citrate Solutions by DC and AC Electrochemical Methods ,” Corrosion. , Vol. 46(12), pp. 1007-1014, 1990.
Rad, H.R.B. dkk, “Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys ,” Materials & Design. , Vol. 33(0), pp. 88- 97, 2012.
Kirkland, N.T. dkk, “In-vitro dissolution of magnesium–calcium binary alloys: Clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys ,” Journal of Biomedical Materials Research Part B: Applied Biomaterials. , Vol. 95B(1), pp. 91-100, 2010.
Refbacks
- There are currently no refbacks.