Deposisi Lapisan Fe-Si-Al-Mg pada Baja Karbon dengan Teknik Pemaduan Mekanik [Deposition of Fe-Si-Al-Mg Coatings Using Mechanical Alloying Technique]

Lusita Lusita, Riser Fahdiran, Toto Sudiro, Bambang Hermanto

Abstract

Fe-Si-Al-Mg coatings by weight variation of ferrosilicon, Mg, and Al as 50(Fe-Si)-37.5Al-12.5Mg, 50(Fe-Si)-25Al-25Mg, and 50(Fe-Si)-12.5Al-37.5Mg have been prepared on low carbon steel substrate using the mechanical alloying technique. The coatings were studied using XRD (x-ray diffractometer) to comprehend the phase formed on the substrate and OM (optical microscopy) to measure the coating thickness. Based on XRD and OM characterization, Fe-Si-Al-Mg coatings were successfully deposited on the low carbon steel substrate. Fe-Si-Al-Mg layers are composed by intermetallic phases of FeSi2, Mg2Si, and Al0.7Fe3Si0.47. Each composition shows different coating thickness that tends to decreases with the increase of magnesium concentration and the reduction of aluminum concentration. 

Abstrak

Lapisan Fe-Si-Al-Mg dengan variasi berat ferrosilicon, Mg dan Al yaitu 50(Fe-Si)-37.5Al-12.5Mg, 50(Fe-Si)-25Al-25Mg, dan  50(Fe-Si)-12.5Al-37.5Mg telah dipreparasi pada substrat baja karbon rendah dengan menggunakan teknik pemaduan mekanik (mechanical alloying). Struktur dari lapisan Fe-Si-Al-Mg dipelajari menggunakan XRD (X-ray Diffraction) untuk mengetahui fasa yang terbentuk dan OM (Optical Microscope) untuk mengetahui ketebalan lapisan yang didapatkan. Hasil X-ray Diffraction dan Optical Microscope menunjukkan bahwa lapisan Fe-Si-Al-Mg telah berhasil dideposisikan pada substrat baja karbon rendah. Lapisan Fe-Si-Al-Mg yang terbentuk memiliki fasa intermetalik FeSi2, Mg2Si dan Al0.7Fe3Si0.47. Setiap komposisi menunjukkan ketebalan lapisan yang berbeda. Ketebalan lapisan cenderung menurun dengan meningkatnya konsentrasi magnesium dan berkurangnya konsentrasi aluminium.


Keywords

Lapisan; Fe-Si-Al-Mg; pemaduan mekanik; fasa; ketebalan; Fe-Si-Al-Mg layer; mechanical alloying; intermetallic phase

References

T. Sudiro et al., “High temperature cyclic oxidation resistance of 50Cr-50Al coatings mechanically alloyed on low carbon steel,” Journal of Alloys and Compounds, vol. 732, pp. 655–665, Jan. 2018.

A. Canakci, F. Erdemir, T. Varol, and S. Ozkaya, “Formation of Fe–Al intermetallic coating on low-carbon steel by a novel mechanical alloying technique,” Powder Technology, vol. 247, pp. 24–29, Oct. 2013.

K. Kurokawa, T. Sudiro, T. Sano, S. Kyo, O. Ishibashi, and M. Nakamori, “High-temperature corrosion resistance of SiO2-forming materials,” Corrosion Reviews, vol. 36, no. 1, pp. 65–74, Feb. 2018.

T. Prosek, A. Nazarov, U. Bexell, D. Thierry, and J. Serak, “Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions,” Corrosion Science, vol. 50, no. 8, pp. 2216–2231, Aug. 2008.

Z. Ping, Y. He, C. Gu, and T.-Y. Zhang, “Mechanically assisted electroplating of Ni–P coatings on carbon steel,” Surface and Coatings Technology, vol. 202, no. 24, pp. 6023–6028, Aug. 2008.

J. Tanaka, K. Ono, S. Hayashi, K. Ohsasa, and T. Narita, “Effect of Mg and Si on the Microstructure and Corrosion Behavior of Zn-Al Hot Dip Coatings on Low Carbon Steel.,” ISIJ International, vol. 42, no. 1, pp. 80–85, 2002.

G. X. Wu, J. Y. Zhang, and Q. Li, “Effects of Mg Addition on Thickness of Galvalume Coating: A First-Principles Study,” Advanced Materials Research, vol. 291–294, pp. 125–128, Jul. 2011.

V. R. S. Sá Brito, I. N. Bastos, and H. R. M. Costa, “Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel,” Materials & Design, vol. 41, pp. 282–288, Oct. 2012.

V. Zadorozhnyy, S. Kaloshkin, E. Kaevitser, and S. Romankov, “Coating of metals with intermetallics by mechanical alloying,” Journal of Alloys and Compounds, vol. 509, pp. S507–S509, Jun. 2011.

G. Gupta, K. Mondal, and R. Balasubramaniam, “In situ nanocrystalline Fe–Si coating by mechanical alloying,” Journal of Alloys and Compounds, vol. 482, no. 1–2, pp. 118–122, Aug. 2009.

C. Suryanarayana, “Mechanical alloying and milling,” Progress in Materials Science, p. 184, 2001.

L. Lu, M. O. Lai, and Zhang, S, “Modeling of the mechanical-alloying process,” p. 8.

O. K. Goldbeck, IRON-Binary Phase Diagrams. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982.

Q. C. Jiang, H. Y. Wang, Y. Wang, B. X. Ma, and J. G. Wang, “Modification of Mg2Si in Mg–Si alloys with yttrium,” Materials Science and Engineering: A, vol. 392, no. 1–2, pp. 130–135, Feb. 2005.

M. E. Moussa, M. A. Waly, and A. M. El-Sheikh, “Effect of Ca addition on modification of primary Mg2Si, hardness and wear behavior in Mg–Si hypereutectic alloys,” Journal of Magnesium and Alloys, vol. 2, no. 3, pp. 230–238, Sep. 2014.

Copyright (c) 2019 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.