Failure of Heat Exchanger Return Bend Due to Long-Term Localized Overheating [Kerusakan pada Pipa Belokan U Alat Penukar Kalor akibat Panas Berlebih secara Lokal dalam Jangka Panjang]
Abstract
A return bend of a heat exchanger had failed due to bursting after it had been only about 2.5 years in service. The heat exchanger was used to transfer heat from hot combustion gas on the shell side to the feedstock oil on the tube side. Type and factors that may have caused the return bend bursting are discussed in this paper. The metallurgical assessment was conducted by preparing a number of specimens from the as-received burst and unburst return bends. Various laboratory examinations were performed including visual and macroscopic examination, chemical analysis, metallographic examination, hardness testing, and scanning electron microscopy equipped with energy-dispersive spectroscopy analysis. Results of the metallurgical assessment obtained showed that the burst return bend had been experiencing fracture overload due to local hot spot or long-term localized overheating occurred on the outer bend external surface. The long-term localized overheating was most likely caused by formation of fouling deposit that was built up on the outer bend internal surface, leading to increase the corrosion rate significantly and resulted in excessive metal loss or thinning occurred on the outer bend external surface. Consequently, the hoop stress at the outer bend section had been increasing significantly and eventually the working pressure of the feedstock oil on the tube side could burst the return bend wall thereon
Abstrak
Tulisan ini menyajikan penelitian yang dilakukan pada sebuah belokan pipa U (return bend) pada sebuah alat penukar kalor yang mengalami kerusakan (pecah) setelah beroperasi hanya dalam waktu 2,5 tahun. Alat penukar kalor tersebut digunakan untuk memindahkan panas dari gas panas hasil pembakaran pada sisi bejana/tabung ke dalam bahan baku minyak (feedstock oil) pada sisi pipa. Material belokan pipa U tersebut dibuat dari baja karbon dengan standar ASTM A-234 Gr.WPB, memiliki diameter 2 inch dan tebal SCH 80. Penelitian berupa observasi dan pengujian metalurgi dilaksanakan dengan menyiapkan sejumlah sampel material dari belokan pipa U, baik yang sudah pecah maupun yang tidak pecah. Pengujian yang dilakukan meliputi uji visual dan makro, analisa kimia, uji metalografi, uji kekerasan dengan metoda Vickers dan SEM (scanning electron microscopy) - EDS (energy dispersive spectroscopy). Hasil pengujian metalurgi menunjukkan bahwa pipa belokan U yang pecah mengalami kerusakan akibat beban berlebih yang dipengaruhi oleh local hot spot atau panas berlebih secara lokal dalam jangka panjang (long-term localized overheating). Akibatnya, tegangan yang bekerja pada dinding belokan pipa U mengalami peningkatan yang sangat signifikan sehingga pada akhirnya tekanan operasi yang terjadi pada bahan baku minyak di dalam pipa dapat merobek atau memecahkan bagian dinding belokan pipa U tersebut.
Keywords
Full Text:
PDFReferences
K.E. Perumal, “Stress-Corrosion Cracking of Stainless Steel Heat Exchanger Tubes In a Fertilizer Plant”, pub-lished in Handbook of Case Histories in Failure Analysis, vol.1, ASM International, Material Park, Ohio, May 1994, pp.126-127
D.N. Adnyana, “Stress-Corrosion Cracking In A Nickel-Base Alloy Pre-Heater Expansion Bellows”, J. Sci. Tech. in Metallurgy, vol. 29, no.3, pp. 235-244, 2014
N. D. Kundnaney, D.K. Kushwaha, “A Critical Review on Heat Exchangers Used in Oil Refinery”, Proceedings of Afro-Asian International Conference on Science, Engineering & Technology, ISBN : 9-780993-909238, pp. 1-5, 2015
I. M. Ghayad, Z. A. Hamid, N. Gomaa, “A Case Study : Corrosion Failure Of Tube Heat Exchanger”, J. Metall. Eng., vol. 4, pp.57-61, 2015
D.N. Adnyana, “Failure Analysis of Stainless Steel Heat Exchanger Tubes In A Petrochemical Plant”, J. Fail. Anal. and Preven, vol. 18, pp. 413-422, 2018
L. Liu, N. Ding, J. Shi, N. Xu, W. Guo, C.L. Wu, “Failure Analysis of Tube-To-Tube Sheet Welded Joints In A Shell-Tube Heat Exchanger”, Case Stud. Eng. Fail. Anal, vol. 7, pp. 32-40, 2016
S. Addepalli, D. Eiroa, S. Lieofrakool, A.L. Fancois, J. Guisset, D. Sanjaime, P. Phillips, “Degradation study of heat exchangers”, Procedia CIRP, vol. 38, pp. 137-142, 2015
A.P. Watkinson, “Deposition from Crude Oils in Heat Exchangers”, Proceedings of 6th International Confer-ence on Heat Exchanger Fouling and Cleaning , Kloster Irsee, Germany, pp. 7-16, June 5-10, 2005
W. Wang and A.P. Watkinson, “Iron Sulphide and Coke Fouling from Sour Oils : Review and Initial Experi-ments”, Proceedings of International Conference on Heat Exchanger Fouling and Cleaning, Crete Island, Greece, pp. 23-30, June 5-10, 2011
ASM Handbook, “Metallography and Microstructures”, ASM International, Materials Park, Ohio, vol. 9, pp. 588-607, 2004
Metals Handbook, “Properties and Selection: Irons, Steels, and High-Performance Alloys”, ASM Interna-tional, Materials Park, Ohio,vol.1, pp. 140-148, 327-333, 1990.
ASM Handbook, “Failure Analysis and Prevention”, ASM International, Materials Park, Ohio, vol. 11, pp.2626-2631, 2002
Damage Mechanisms Affecting Fixed Equipment in the Refining Industry, API RP 571, “Graphitization and Softening (Spheroidization)”, American Petroleum Institute, Washington DC, 1st edn, pp.1-7, 2003
Advanced Materials and Processes, “Guide To Engineered Materials”, ASM International, Materials Park, Ohio, pp. 51-61, December 2003,
ASME BPVC Section II Part A, “Ferrous Materials Specification”, The American Society of Mechanical Engineers, New York, NY, pp.371-380, 2007
Damage Mechanisms Affecting Fixed Equipment in the Refining Industry, API RP 571, “Sulfidation”, American Petroleum Institute, Washington DC, 1st edn, pp.109-112
Damage Mechanisms Affecting Fixed Equipment in the Refining Industry, API RP 571, “Creep and Stress Rupture”, American Petroleum Institute, Washington DC, 1st edn, p.23-26, 2003
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Refbacks
- There are currently no refbacks.