Fabrikasi Paduan Magnesium Berpori dengan Partikel Garam NaCl sebagai Space Holder [Fabrication of Magnesium Alloy Porous by Using NaCl Salt Particle as a Space Holder]

Franciska Pramuji Lestari

Abstract

 Porous magnesium metal is a metal potential as a bone implant because of its light, biodegradable in the body and can accommodate the growth and regeneration of bone tissue cells. The fabrication of magnesium (Mg), calcium (Ca) and zinc (Zn) with porous structures were carried out by powder metallurgy processes using salt particles (NaCl) as a space holders. This study was conducted to produce an isolated and heterogeneous porous metal structure. The various sintering temperatures of 600, 650 and 700 °C with constant holding time at 3 h and the composition of space holder of NaCl (wt.%) 5, 10, and 20 are used for making porous in the Mg-Ca-Zn alloy. Microstructure observation of Mg alloy is carried out by using SEM (scanning electron microscopy), the distribution of elements was done by EDX (energy dispersive x-ray spectroscopy) mapping and also XRD (x-ray diffraction) analysis. Compressive test and % porosity by Archimedes method are carried out to determine the strength of this alloy. NaCl space holder was removed by immersion in ethanol solution and glycerin for 48 h at room temperature. By using 20 wt.% NaCl and sitering temperature of  650 °C revealed high porosity and high compressive strength in Mg alloy. The highest porosity is around 34.57% and the compressive strength is 197.339 MPa. The results showed that the pore structure and mechanical properties were closed to conformity with cortical bone, therefore the porous metal of Mg-Zn-Ca alloy with NaCl as a space holder which was obtained in this study potentially for bone replacement applications.

 

Abstrak

Logam magnesium berpori merupakan logam yang potensial sebagai implan tulang karena beratnya yang ringan, sifatnya yang mampu luruh di dalam tubuh serta mampu mengakomodasi pertumbuhan dan regenerasi sel jaringan tulang. Paduan magnesium (Mg), paduan kalsium (Ca) dan seng (Zn) dengan struktur berpori difabrikasi dengan proses metalurgi serbuk menggunakan partikel garam (NaCl) sebagai pembuat ruang/pori (space holder). Studi ini dilakukan untuk menghasilkan struktur logam berpori yang terisolasi dan heterogen. Optimalisasi parameter untuk membuat logam berpori dengan NaCl sebagai space holder adalah dengan melakukan variasi temperatur sintering 600, 650 dan 700 °C dengan waktu tahan konstan selama 3 jam serta komposisi %berat NaCl pada 5, 10 dan 20. Karakterisasi struktur mikro paduan Mg dilakukan dengan menggunakan SEM (scanning electron microscopy), persebaran unsur dilakukan dengan mapping EDX (energy dispersive x-ray spectroscopy) dan juga XRD (x-ray diffraction) analysis. Pengujian tekan dan % porositas dengan metoda Archimedes dilakukan untuk mengetahui nilai kekuatan paduan. Penghilangan NaCl sebagai space holder yaitu dengan perendaman dalam campuran larutan etanol dan gliserin selama 48 jam pada temperatur ruang sehingga menghasilkan porositas tertinggi Mg dengan 20% berat NaCl pada temperatur sinter 650 °C, yaitu 34,57% porositas, serta kekuatan kompresi 197,339 MPa pada 5% berat NaCl pada temperatur sinter 650 °C. Hasil penelitian menunjukkan bahwa struktur pori serta sifat mekanik yang dihasilkan mendekati kesesuaian dengan cortical bone, sehingga secara fisik dan mekanik logam berpori paduan Mg-Zn-Ca dengan space holder NaCl memiliki potensi untuk aplikasi pengganti tulang.

 

Keywords

Implan mampu luruh; paduan Mg; pembuat ruang NaCl; struktur berpori; Degradable implant; Mg alloy; NaCl space holder; porous structure

References

L. Lefebvre, J. Banhart, dan D.C. Dunand, "Porous metals and metallic foams : Current status and recent developments," Advanced Engineering Materials, vol. 10(9), pp. 775–787, 2008.

S. Chiras, D. R. Mumm, A. G. Evans, N. Wicks, J. W. Hutchinson, K. Dharmasena, H. N. G. Wadley, dan S. Fichter, "The structural performance of near-optimized truss core panels," International Journal of Solids and Structures, vol. 39(15), pp. 4093-4115, 2002.

A. J. T. Clemow, A. M. Weinstein, J. J. Klawitter, J. Koeneman, dan J. Anderson, "Interface mechanics of porous titanium implants," J. Biomed. Mater. Res., vol. 15, pp. 73–82, 1981.

E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, dan Y. Kuboki, "Pore size of porous hydroxyapatite as the cell-substratum controls BMP- induced osteogenesis," J Biochem., vol. 121, pp. 317–324, 1997.

S. Yang, K. F. Leong, Z. Du, dan C. Chua, "The design of scaffolds for use in tissue engineering. Part I. traditional factors," Tissue Eng., vol. 7(6), pp. 679–689, 2001.

K. Alvarez dan H. Nakajima, "Metallic scaffolds for bone regeneration," Materials, vol. 2, pp. 790–832, 2009.

S. J. Hollister, "Porous scaffold design for tissue engineering," Nat. Mater., vol. 4, pp. 518-524, 2005.

V. Karageorgiou dan D. Kaplan, "Porosity of 3D biomaterial scaffolds and osteogenesis," Biomaterials, vol. 26, pp. 5474–5491, 2005.

F. Witte, H. Ulrich, M. Rudert, dan E. Willbold, "Biodegradable magnesium scaffolds: Part I: Appropriate inflammatory response," J. Biomed. Mater. Res. A, vol. 81, pp. 748–756, 2007.

F. Witte, H. Ulrich, C. Palm, dan E. Willbold, "Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling," J. Biomed. Mater. Res. A, vol. 81, pp. 757–765, 2007.

Y. Bi, Y. Zheng, dan Y. Li, "Microstructure and mechanical properties of sintered porous magnesium using polymethyl methacrylate as the space holder," Mater. Lett., vol. 161, pp. 583–586, 2015.

X. C. Xia, X. W. Chen, Z. Zhang, X. Chen, W. M. Zhao, B. Liao, dan B. Hur, "Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam," J. Magnes. Alloy., vol. 1, pp. 330–335, 2013.

J. Banhart, "Manufacture, characterization and application of cellular metals and metal foams," Prog. Mater. Sci., vol. 46, pp. 559–632, 2001.

Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, dan K. Higashi, "Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05 g/cm3," J. Mater. Sci. Lett., vol. 18, pp. 1477–1480, 1999.

N. Tuncer dan G. Arslan, "Designing compressive properties of titanium foams," J. Mater. Sci., vol. 44(6), pp. 1477–1484, 2009.

P. Patnaik, Handbook of Inorganic Chemicals, NY: McGraw-Hill, 2003.

M. Gupta dan N. M. L. Sharon, Magnesium, magnesium alloys, and magnesium composites, NJ: Wiley, 2010.

K. Yang dan L. Tan, "Control of biodegradation of magnesium (Mg) alloys for medical applications," Corrosion Prevention of Magnesium Alloys, pp. 509-543, 2013.

Y. Li, X. Wang, X. Wang, Y. Ren, F. Han, dan C. Wen, "Sound absorption characteristics of aluminum foam with spherical cells," J. Appl. Phys. 110 pp. 1–7, 2011.

Y. Zhou, A. Jiang, dan J. Liu, "The effect of sintering temperature to the microstructure and properties of AZ91 magnesium alloy by powder metallurgy," Applied Mechanics and Materials, vol. 377, pp. 250-254, 2013.

X. Zhang, X. Li, J. Li, dan X. Sun, "Processing, microstructure and mechanical properties of biomedical magnesium with a specific two-layer structure," Prog. Nat. Sci. Mater. Int., vol. 23, pp. 183–189, 2013.

S. Cai, T. Lei, N. Li, dan F. Feng, "Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys," Mater. Sci. Eng. C, vol. 32, pp. 2570–2577, 2012.

H.R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M. A. M. Yajid, M. Mezbahul-Islam, M. Kasiri-Asgarani, dan M. Medraj, "Microstructure and bio-corrosion behavior of Mg-Zn and Mg-Zn-Ca alloys for biomedical applications," Mater. Corros., vol. 65, pp. 1178–1187, 2014.

A. H. Yusop, A. A. Bakir, N. A. Shaharom, M. R .A. Kadir, dan H. Hermawan, "Porous biodegradable metals for hard tissue scaffolds : A Review," Int. J. Biomat., vol. 2012, 2012.

S. Lee, M. Porter, S. Wasko, G. Lau, P. Chen, E. E. Novitskaya, A. P. Tomsia, A. Almutairi, M. A. Meyers, dan J. Mckittrick, "Potential bone replacement materials prepared by two methods," MRS Proceedings, vol. 1418, 2012.

Z. Hussain dan N. S. A. Suffin, "Microstructure and mechanical behaviour of aluminium foam produced by sintering dissolution process using NaCl space holder," J. Eng. Sci., vol. 7, pp. 37–49, 2011.

C. E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, dan M. Mabuchi, "Compressibility of porous magnesium foam : dependency on porosity and pore size," Mat. Lett., vol. 58, pp. 357–360, 2004.

Copyright (c) 2019 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.