Magnet Nanokomposit Sebagai Magnet Permanen Masa Depan [Nanocomposite Magnets as Future Permanent Magnets]

Novrita Idayanti, Azwar Manaf, Dedi Dedi

Abstract

Abstract

 

This paper reviews research and development of permanent magnet materials based on study literatures that have been conducted by researchers in more than 100 years. It is known that the era of modern permanent magnets began in the early 19th century and lasted for approximately 100 years. In the past 100 years, it turned out the research focus of the researchers was to look  for potential magnetic compounds. Not surprisingly, in a period of 100 years that various types of magnetic compounds were found. The rare earth metal magnet Nd-Fe-B was found at the end of the 19th century with a maximum energy product value or (BH)max of 56 MGOe (448 kJ.m-3) obtained. The value is the highest value ever achieved by researchers to date. However, the authors observe that since the early 20th century, there has been a change in the focus of research development that is currently not focus on the search and discovery of new magnetic phases, but rather to develop the magnetic material structure through the incorporation of hard magnetic phases with high magnetocrystalline value with a soft magnetic phase that has a high saturated magnetization value in a composite structure to become a nanocomposite magnets. The nanocomposite magnets are permanent magnets with superior magnetism properties compared to conventional magnets. The excellence magnetic properties are the value of remanent magnetization (Mr) and the maximum energy product (BH)max  due to the effect of exchange coupled spring between the hard and soft magnetic phases so as to align the magnetic orientation of the two magnetic phases under the influence of exchange interaction. The theoretical researchers have also explored the potential of a nanocomposite permanent magnet and assigned (BH)max value of 1 MJ.m-3 as the ultimate value that must be achieved experimentally. The ultimate value has opened big challenges and become a new destination for experimental researchers. In this review paper, we present knowledge, research, and methods on improving the magnetism properties of ferrite, rare earth, and alloy metals based on exchange interaction mechanisms during the exchange spring magnet between hard and soft phases.

 

Abstrak

Naskah ini dibuat berdasarkan kajian literatur tentang penelitian dan pengembangan material magnet permanen terutama pengembangan yang dilakukan oleh para peneliti dalam lebih 100 tahun belakangan. Diketahui bahwa, era magnet permanen modern dimulai pada awal abad ke 19 berlangsung kurang lebih 100 tahun. Dalam 100 tahun kebelakang, ternyata fokus penelitian para peneliti adalah pencarian senyawa magnetik yang potensial. Tidak  mengherankan bila dalam periode 100 tahun tersebut berbagai jenis senyawa magnetik berhasil ditemukan. Diawali dengan steel sebagai magnet permanen telah digunakan pada awal abad 19, menyusul kelas-kelas magnetik lainnya seperti alnico, magnet keramik, magnet logam tanah jarang Sm-Co dan terakhir magnet magnet logam tanah jarang Nd-Fe-B dan Sm-Fe-N. Magnet logam tanah jarang Nd-Fe-B ditemukan diujung abad 19 dengan nilai maximum energy product  atau (BH)max sebesar 56 MGOe (448 kJ.m-3) telah berhasil diperoleh. Nilai tersebut adalah nilai tertinggi yang pernah dicapai oleh para peneliti sampai saat ini. Namun, penulis mengamati bahwa sejak awal abad 20, ternyata telah terjadi perubahan pada fokus pengembangan penelitian yaitu saat ini tidak lagi berfokus pada pencarian dan penemuan fasa magnetik baru, akan tetapi lebih kepada merekayasa struktur material magnetik melalui penggabungan fasa magnetik keras yang memiliki konstanta magnetocrystalline tinggi dengan fasa magnetik lunak yang memiliki nilai magnetisasi jenuh yang tinggi dalam sebuah struktur komposit sehingga menjadi magnet nanokomposit.  Magnet nanokomposit adalah magnet permanen dengan sifat kemagnetan yang lebih unggul dibandingkan dengan magnet konvensional. Keunggulan dimaksud adalah pada nilai magnetisasi remanen (Mr) dan nilai produk energi maksimum (BH)max yang tinggi disebabkan terjadinya efek exchange coupled spring antara fasa maknetik keras dan lunak sehingga mensejajarkan arah magnetisasi kedua fasa magnetik dibawah pengaruh interaksi pertukaran. Para peneliti teoritik pun telah menggali potensi magnet permanen nanokomposit dan menetapkan nilai (BH)max sebesar 1 MJ.m-3 sebagai nilai ultimate  yang harus dapat dicapai secara eksperimental. Nilai ultimate tersebut telah membuka tantangan yang besar dan menjadi destinasi baru bagi para peneliti eksperimental. Dalam makalah review ini, disampaikan pengetahuan, penelitian, dan metoda tentang peningkatan sifat kemagnetan material ferit, tanah jarang, dan logam paduan berdasarkan exchan ge interaction mechanism pada saat terjadinya exchange spring magnet antara fasa keras dan fasa lunak.

Keywords

Magnet nanokomposit; magnet permanen; perkembangan material magnet; Magnet nanocomposite; permanent magnets; development of materials magnet

References

J.D. Livingston, “The history of permanent-magnet materials,” The Journal of The Minerals, Metals & Materials Society., vol. 42, issue 2, pp. 30-34, 1990. doi.org/10.1007/BF03220870.

Magnetic Magnets. A Brief History. [Online]. Available: http://www.magneticmagnets.co.nz/technical/A-Brief-History.html, 2017. [Accessed: 04, Jan, 2018].

APS News, “Oersted and electromagnetism,” American Physical Society, vol.17, no.7. [Online].

Available:https://www.aps.org/publications/apsnews/200807/physicshistory.cfm. [Accessed: 04, Jan, 2018].

First4magnets, “a history of electrocity and magnetism,” Magnet Expert Ltd. 2018. [Online] Available: https://www.first4magnets.com/techcentre-i61/information-and-articles-i70/a-history-of-electricity-and-magnetism-i80. [Accessed: 04, Jan, 2018].

B. D. Cullity dan C. D. Graham, “Introduction to magnetic materials, chapter 11,” John Wiley & Sons, pp. 87-114, 2011.

L. Pauling, “A theory of ferromagnetism,” Physic, vol. 39, pp. 551-559,1953. jstor.org/stable/i205453.

J. Ding, H. Yang, W. F. Miao, P. G. McCormick, dan R. Street, “High coercivity Ba hexaferrite prepared by mechanical alloying,” Journal of Alloys and Compounds., vol. 221, issues 1-2, pp. 70-73, 1995.

doi.org/10.1016/0925-8388(94)01402-7.

Magnetstek, “SmCo rare earth magnets,”. [Online] Available: http://www.magnetstek.com/smco_rare_earth_magnets.html, 2009. [Accessed: 04, Jan, 2018].

J. J. Croat, J. F. Herbst, R. W. Lee, dan F. E. Pinkerton, “Pr-Fe and Nd-Fe-based materials: A new class of high-performance permanent magnets (invited),” J. Appl. Phys., vol. 55, pp. 2078-2082, 1984. doi.org/10.1016/1.333571.

Sagawa, M. Fujijamura, S. Tagawa, M. Yamamoto, dan Y. Matsuura, “New material for permanent magnets on a base of Nd and Fe (invited),” J. Appl. Phys., vol. 55, pp. 2083-2087, 1984. doi:10.1063/1.333572.

Chamberod, dan F. Vanoni, “NdFeB magnets by melt spinning,” I. V. Mitchell et al. (eds.), Concerted European Action on Magnets (CEAM) © ECSC, EEC, EAEC, Brussels and Luxembourg, pp. 436-448, 1989. doi: https://doi.org/10.1007/978-94-009-1135-2_38.

A. Z. Liu, I. Z. Rahman, M. A. Rahman, dan E. R. Petty, “Fabrication and measurements on polymer bonded NdFeB magnets,” Journal of Materials Processing Technology., vol. 56, issues 1-4, pp. 571-580, 1996. doi.org/10.1016/0924-0136(95)01871-9.

S. Lieserta, A. Kirchnera, W. Grunbergera. A. Handsteina, P. De Rangob, D. Fruchartb, L. Schultza, dan K. H. Müllera, “Preparation of anisotropic NdFeB magnets with different Nd contents by hot deformation (die-upsetting) using hot-pressed HDDR powders,” Journal of Alloys and Compounds., vol. 266, issues 1-2, pp. 260-265, 1998. doi.org/10.1016/S0925-8388(97)00439-8.

Z. Rui, W. Hui Jie, L. Jia Jie, Z. Wen Chen, L. Bin, Z. M. Gang, dan P. Wei, “Simulation of hot deformation process for die-upset Nd-Fe-B magnets,” Journal of Functional Materials, vol. 3, pp. 273-280, 2011.

R. W. Lee, E. G. Brewer, dan N. A. Schafel, “Processing of neodymium-iron-boron melt spun ribbons to fully dense magnets,” IEEE Trans. Magn., vol MAG-21, pp. 1958, 1985. doi: 10.1109/tmag.1985.1064031.

S. Rivoirard, P. de Rango, D. Fruchart, Y. Chastel, dan C. L. Martin. “Rheological study of hot-forged NdFeB and related permanent magnet properties,” Materials Science and Engineering A311, pp. 121–127, 2001. doi: 10.1016/s0921-5093(01)00915-7.

M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura dan Y. Matsuura, “Nd–Fe–B permanent magnet materials,” Japanese Journal of Applied Physics, vol. 26, no. 6, pp. 785-800, 1987.

W. Moa, L. Zhang, Q. Zhen Liu, A. Shan, J. Wua, dan M. Komuro,” Dependence of the crystal structure of the Nd-rich phase on oxygen content in an Nd–Fe–B sintered magnet,” Scripta Materialia, vol. 59, issue 2, pp. 179-182, 2008. doi: 10.1016/j.scriptamat.2008.03.004.

A. Rezaei, G. Nabiyouni, dan D. Ghanbari, “Photo-catalyst and magnetic investigation of BaFe12O19–ZnO nanoparticles and nanocomposites,” J Mater Sci: Mater Electron, vol. 27, pp. 11339–11352, 2016. doi: 10.1007/s10854-016-5258-y.

S. N. Ezzati Mirhashemi, M. Rabbani, S. M. H. Ezzati Mirhashemi, R. Rahimi, E. Asadi, dan S. Azodi-Deilami, “Conducting, magnetic polyaniline/Ba0.25Sr0.75 Fe11(Ni0.5Mn0.5)O19 nanocomposite: fabrication, characterization and application,” Journal of Alloys and Compounds, vol. 646, pp. 1157-1164, 2015. doi: 10.1016/j.jallcom.2015.05.146.

T. Saito, S. Nozaki, dan D. N. Hamane, “Improvement of coercivity in Nd-Fe-B nanocomposite magnets,” Journal of Magnetism and Magnetic Materials, vol. 445, pp. 49-52, 2018. doi: 10.1016/j.jmmm.2017.08.083.

S. Behrens, dan I. Appel, “Magnetic nanocomposites,” Current Opinion in Biotechnology, vol. 39, pp. 89-96, 2016. doi: https://doi.org/10.1016/j.copbio.2016.02.005.

S. Behren, “Mini review: preparation of functional magnetic nano composites and hybrid materials: recent progress and future directions,” Nanoscale, issue 3, pp. 877-892, 2011. doi: 10.1039/C0NR00634C.

Y. Lin, H. Yang, dan Z. Zhu, “Impedance spectroscopy analysis of 0.7BiFeO3-0.3BaTiO3/BiY2Fe5O12 composites with simultaneously improved magnetization and remnant polarization,” Mater Chem and Phys., vol.136, issues 2-3, pp. 286-291, 2012. doi: 10.1016/j.matchemphys.2012.07.007.

H. Yang, T. Ye, Y. Lin, M. Liu, G. Zhang, dan P. Kang, “Giant enhancement of (BH)max in BaFe12O19/Y3Fe5O12 nanocomposite powders,” Mater. Lett., vol. 145, pp. 19-22, 2015. doi: 10.1016/j.matlet.2015.01.080.

A. Manaf, R. A. Buckley, dan H. A. Davies, “New nanocrystalline high remanence Fe-Nd-B alloys by rapid solidification,” J. Magn. Magn. Mate., vol. 128, pp. 302-306, 1993. doi: 10.1016/0304-8853(93)90475-h.

D. D. Majumder, dan S. Karan, “Magnetic properties of ceramic nanocomposites, ceramic nanocomposites,” Woodhead Publishing Series in Composites Science and Engineering, pp. 51-91, 2013. doi: https://doi.org/10.1533/9780857093493.1.51.

D. M. Bruls, dan T. H. Evers, “Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles,” Lab on Chip, vol. 9, pp. 3504, 2009. doi: 10.1039/B913960E.

R. Chen, M. G. Christianse, dan P. Anikeeva, “Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization,” ACS Nano 7, vol. 10, pp. 8990, 2013. doi: 10.1021/nn4035266.

F. Choueikani, dan F. Royer, “Magneto-optical waveguides made of cobalt ferrite nanoparticles,” Appl. Phys. Lett., vol. 94, pp. 051113-051119, 2009. doi: 10.1063/1.3079094.

S. Varshney, A. Ohlan, dan V. K. Jain, “Synthesis of ferro fluid based nano architectured polypyrrole composites and its application for electromagnetic shielding,” Mate. Chem. Phys., vol. 143, issue 2, pp. 806-813, 2014. doi: https://doi.org/10.1016/j.matchemphys.2013.10.018.

R. C. Pullar, “Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics,” Prog. Mater. Sci., vol. 57, pp. 1191, 2012. doi: 10.1016/j.pmatsci.2012.04.001.

H. Nikmanesh, dan M. Moradi, “Effect of multi dopant barium hexaferrite nanoparticles on the structural, magnetic, and X-Ku bands microwave absorption properties,” J. Alloys Compd., vol. 708, pp. 99, 2017. doi: 10.1016/j.jallcom.2017.02.308.

E.F. Kneller, dan R. Hawig, “The exchange-spring magnet: A new material principle for permanent magnets,” IEEE Trans. Magn, vol.27, pp. 3588-3601, 1991. doi: 10.1109/20.102931.

S. Pan, “Rare earth permanent magnet alloys high temperature phase transformation,” Springer Heidelberg Dordrecht London New York, ISBN 978-3-642-36388-7 (eBook), Metallurgical Industry Press, pp. 27-93, 2013. doi: 10.1007/978-3-642-36388-7.

I. Sobhani, A. Athaie, M. Ijafi, dan Z. Sadighi, "Synthesis of nickel/Ba-hexaferrite magnetic nano-composite via mechanical alloying route,” Advanced Materials Research, vol. 829, pp. 520-524, 2014. doi: https://doi.org/10.4028/www.scientific.net/AMR.829.520.

H. Yang, T. Ye, Y. Lin, dan M. Liu, “Preparation and microwave absorption property of graphene/BaFe12O19/CoFe2O4 nanocomposite,” Applied Surface Science, vol. 357, pp. 1289-1293, 2015. doi: 10.1016/j.apsusc.2015.09.147.

Susilawati, A. Doyan, dan Khalilurrahman, “Synthesis and characterization of barium hexaferrite with manganese (Mn) doping material as anti-radar,” AIP Conference Proceedings 1801, 2017, pp. 040007-0400012. doi: 10.1063/1.4973096.

H. Tian, Y. Zhang, J. Han, Z. Xu, X. Zhang, S. Liu, C. Wang, Y. Yang, L. Han, dan J. Yang, “Synergetic crystallization in a Nd2Fe14B/α-Fe nanocomposite under electron beam exposure conditions,” Nanoscale, vol. 8, issue 42, pp. 18221-18227, 2016. doi: 10.1039/c6nr06884g.

Y. P. Jin, M. Hu, dan J. Gao, “Preparation and crystallization of Nd2Fe14B/α-Fe permanent magnetic nanomaterial by mechanical milling,” Advanced Materials Research, vol. 486, pp. 70-74, 2012. doi: 10.4028/www.scientific.net/AMR.486.70.

G. Sreenivasulu, R. Gopalan, V. Chandrasekaran, dan B. S. Murty, “Spark plasma sintered Sm2Co17–FeCo nanocomposite permanent magnets synthesized by high energy ball milling,” IOP Publishing, Nanotechnology, vol. 19, no. 33, 2008, pp. 1-7. doi: 10.1088/0957-4484/19/33/335701.

Y. Wang, Y. Huang, dan Q. Wang, “Preparation and magnetic properties of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite,” J. Magn. Magn. Mate., vol. 324, pp. 3024-3028, 2012. doi: 10.1016/j.jmmm.2012.04.059.

H. Nikmanesh, M. Moradi, dan P. Kameli, “Effects of annealing temperature on exchange spring behavior of barium hexaferrite/nickel zinc ferrite nanocomposites,” J. Elec. Mate., vol. 46, issue 10, pp. 5933-5941, 2017. doi: 10.1007/s11664-017-5576-8.

F. Yakuphanoglu, A. Ghamdi, dan F. Tantawy, “Electromagnetic interference shielding properties of nanocomposites for commercial electronic devices,” Microsyst Technol, vol. 21, pp. 2397-2405, 2015. doi: 10.1007/s00542-014-2394-2.

M. H. Nazari, “Effects of processing conditions on the characteristics of nano-crystalline barium hexaferrite prepared by mechanical alloying method,” International Journal of Modern Physics B, vol. 22, no. 18 & 19, pp. 3127-3132, 2008. doi: 10.1142/S0217979208048000.

G. C. Hadjipanayis, “Nanophase hard magnets,” J. Magn. Magn. Mater., vol. 200, pp. 373-391, 1999. doi: 10.1016/s0304-8853(99)00430-8.

L. H. Lewis, J. Felix, dan Villacorta, “Perspectives on permanent magnetic materials for energy conversion and power generation,” Metall. Mater. Trans. A, vol. 44, pp. 2-20, 2012. doi: 10.1007/s11661-012-1278-2.

V. Skumryev, S. Stoyanov, Y. Zhang, dan G. Hadjipanayis, ”Beating the superparamagnetic limit with exchange bias,” Nature, vol. 423, pp. 850-853, 2003. doi: 10.1038/nature01687.

T. X. Nguyen, dan O. K. Vuong, “Preparation and magnetic properties of MnBi/Co nanocomposite magnets,” J. Elec. Mater., vol. 46, issue 6, pp. 3359-3366, 2017. doi: 10.1007/s11664-017-5345-8.

X. Rui, Z. Sun, L. Yue, Y. Xu, D. J. Sellmyer, Z. Liu, dan D. J. Miller, “High energy product exchange-spring FePt/Fe cluster nanocomposite permanent magnets,” J. Magn. Magn. Mater, and J.E. Shield: J. Magn. Magn. Mater., vol. 305, pp. 76- 82, 2006. doi: 10.1016/j.jmmm.2005.11.032.

H. Feng, D. Bai, L. Tan, N. Chen, dan Y. Wang, “Preparation and microwave-absorbing property of EP/BaFe12O19/PANI composites,” J. Magn. Magn. Mater, vol. 433, pp. 1-7, 2012. doi: https://doi.org/10.1016/j.jmmm.2016.12.118.

H. Yang, T. Ye, dan Y. Lin, “Microwave absorbing properties of the ferrite composites based on graphene,” J. Alloys Compd., vol. 683, pp. 567-574, 2016. doi: 10.1016/j.jallcom.2016.05.127.

H. Yang, M. Liu, Y. Lin dan Y. Yang, “Simultaneous enhancements of remanence and (BH)max in BaFe12O19/CoFe2O4 nanocomposite powders,” Journal of Alloys and Compounds, vol. 631, pp. 335-339, 2015. doi: 10.1016/j.jallcom.2015.01.012.

H. Yang, T. Ye, Y. Lin, dan M. Liu, “Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe12O19/Y3Fe5O12) ferrites based on polyaniline,” Synthetic Metals vol. 210, pp. 245-250, 2015. doi: 10.1016/j.synthmet.2015.10.006.

Magnetic materials producer association, “Standard specifications for permanent magnet materials,” mmpa standard No. 0100-00, pp. 1-28, 2017.

V. Pop, “The influence of milling and annealing on the structural and magnetic behavior of Nd2Fe14B/α-Fe magnetic nanocomposite,” J Alloys Compd., vol. 581, pp. 821-827, 2013. doi: 10.1016/j.jallcom.2013.07.194.

Y. Su, ”Effects of magnetic field heat treatment on Sm–Co/α-Fe nanocomposite permanent magnetic materials prepared by high energy ball milling,” J Alloys Compd., vol. 647, pp. 375-379, 2015. doi: 10.1016/j.jallcom.2015.06.152.

P. Chowdhury, ”Structural and magnetic properties of SmCo5/Co exchange coupled nanocomposite thin films,” J. Magn Magn. Mater., vol. 342, pp. 74-79, 2013. doi: 10.1016/j.jmmm.2013.04.008.

E. E. Fullerton, J. S. Jiang, dan S. D. Bader, “Hard/soft magnetic heterostructures: model exchange-spring magnets,” Journal of Magnetism and Magnetic Materials vol. 200, issue 1-3, pp. 392-404, 1999. doi: 10.1016/s0304-8853(99)00376-5.

R. Coehoorn, D. B. de Mooij dan C. de Waard, “Meltspun permanent magnet materials containing Fe3B as the main phase,” J. Magn. Magn. Mater., vol. 80, issue 1, pp. 101-104, 1989. doi: 10.1016/0304-8853(89)90333-8.

S. Varshney, A. Ohlan, dan V. K. Jain, “Synthesis of ferrofluid based nanoarchitectured polypyrrole composites and its application for electromagnetic shielding,” Mate. Chem. Phys, vol. 143, issue 2, pp. 806-813, 2014. doi: 10.1016/j.matchemphys.2013.10.018.

R. Skomski dan J. M. D. Coey, “Giant energy product in nanostructured two-phase magnets,” Phys.Rev. B, vol. 48, pp. 15812-16, 1993. doi: 10.1103/PhysRevB.48.15812.

Young magnet, “Neodymium magnets,” Shanghai Young Magnet Co., Ltd. [Online] Available: http://www.ndfebmagnet.net/ndfeb-magnets/sintered-ndfeb magnets/ neodymium-magnets.html, 2017. [Accessed: 05, Jan, 2018].

W. H. Meiklejohn, dan C. P. Bean, ”New magnetic anisotropy,” Phys. Rev., vol. 105, pp. 1413-1414, 1957. doi: https://doi.org/10.1103/PhysRev.105.904.

J. S. Jiang, dan A. Inomata, “Magnetic stability in exchange-spring and exchange-bias systems after multiple switching cycles,” J. Appl. Phys., vol. 89, pp. 6817-6819, 2001. doi: 10.1063/1.1359787.

A. Manaf, M. Leonowicz, H. A. Davies dan R. A. Buckley, "Nanocrystalline Fe-Nd-B type permanent magnet materials with enhanced remanence,” Materials Letters, vol. 13, pp. 194-198, 1992. doi: 10.1016/0167-577x(92)90219-a.

A. Quesada, F. Rubio-Marcos, J. F. Marco, F. J. Mompean, M. García-Hernández, dan J. F. Fernández, “On the origin of remanence enhancement in exchange-uncoupled CoFe2O4-based composites,” Appl. Phys. Lett., vol. 105, pp. 2024051-2024055, 2014. doi: 10.1063/1.4902351.

C. Pahwa, S. K. Mahadevan, dan S. B. Narang, “Structural, magnetic and microwave properties of exchange coupled and nonexchange coupled BaFe12O19/NiFe2O4 nanocomposites,” J. Alloys Compd., vol. 725, pp. 1175-1181, 2017. doi: https://doi.org/10.1016/j.jallcom.2017.07.220.

F. Song, X. Shen, dan M. Liu, ”Microstructure, magnetic properties and exchange–coupling interactions for one-dimensional soft/hard ferrite nanofibers,” J. Solid State Chem., vol. 185, pp. 31-36, 2012. doi: 10.1016/j.jssc.2011.10.009.

D. Primca, dan D. Makoveca, “Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite,” Nanoscale, vol. 7, pp. 2688-2697, 2015. doi: 10.1039/C4NR05854B.

S. M. Radmanes dan S. A. Seyyed Ebrahimi, “Examination the grain size dependence of exchange coupling in oxide-based SrFe12O9/Ni0.7Zn0.3Fe2O4 nanocomposites,” J. Supercond. Nov. Magn., vol. 26, pp. 2411, 2013.

H. Yang, T. Y. Ying, L. Miao, dan L. P. Kang, “Enhancements of (BH)max and remanence in BaFe12O19/CaFe2O4/CoFe2O4 nanocomposite powders by exchange-coupling mechanism,” Mater. Chem. Phys., vol. 171, pp. 27-32, 2016. doi: 10.1016/j.matchemphys.2016.01.010.

G. J. Long, dan F. Grandjean, “Supermagnets, Hard Magnetic Materials,” Springer, vol. 331, pp. 1-844, 1991. doi: 10.1007/978-94-011-3324-1.

E. E. Fullerton, J. S. Jiang, dan M. Grimsditch, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayers,” Phys. Rev. B, vol. 58, pp. 193-200, 1998. doi: https://doi.org/10.1063/1.367769.

R. Fischer, T. Leineweber, dan H. K ronmuller, ”Fundamental magnetization processes in nanoscaled composite permanent magnets,” Phys. Rev. B, vol. 57, pp. 723-732, 1998. doi: 10.1103/physrevb.57.10723.

J. S. Jiang dan S. D. Bader, “Rational design of the exchange-spring permanent magnet,” J. Phys.: Condens. Matter., vol. 26, pp.1-9, 2014. doi: 10.1088/0953-8984/26/6/064214.

P. Gubin, Magnetic Nanoparticles, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp.1-23, 2009.

A. Shanmugavani, R. Kalai, dan S. S. Layek, “Influence of pH and fuels on the combustion synthesis, structural, morphological, electrical and magnetic properties of CoFe2O4 nanoparticles,” Materials Research Bulletin, vol. 71, pp. 122-132, 2015. doi: https://doi.org/10.1016/j.materresbull.2015.04.008.

H. Y. Zhou, dan W. Yu, “Preparation and enhanced thermoelectric properties of p-Type BaFe12O19/CeFe3CoSb12 magnetic nanocomposite materials,” J. Elec. Mate., vol. 43, issue. 6, pp. 1498-1504, 2014. doi: 10.1007/s11664-013-2746-1.

A. Rezaei, J. Saffari, G. Nabiyouni, dan D. Ghanbari, “Magnetic and photo-catalyst BaFe12O19-ZnO: Hydrothermal preparation of barium ferrite nanoparticles and hexagonal zinc oxide nanostructures,” J Mater Sci: Mater. Electron, vol. 28, issue 9, pp. 6607-6618, 2017. doi: 10.1007/s10854-017-6351-6.

N. Shiri, A. Amirabadizadeh, dan A. Ghasemi, “Influence of carbon nanotubes on structural, magnetic and electromagnetic characteristics of Mn-Mg-Ti-Zr substituted barium hexaferrite nanoparticles,” J. Alloys Compd., vol. 690, pp. 759-764, 2016. doi: 10.1016/j.jallcom.2016.08.202.

H. Yang, “Preparations and microwave absorption property of graphene/BaFe12O19/CoFe2O4 nanocomposite,” Applied Surface Scien., vol. 357, pp. 1289-1293, 2015. doi: https://doi.org/10.1016/j.apsusc.2015.09.147.

A. Grabias, dan M. Kopcewicz, “Influence of cobalt content on the structure and keras magnetic properties of nanocomposite (Fe,Co)-Pt-B alloys,” J. Magn. Magn. Mater., vol. 434, pp. 126-134, 2017. doi: https://doi.org/10.1016/j.jmmm.2017.03.047.

H. Tian, dan Y. Zhang, “Synergetic crystallization in a Nd2Fe14B/α-Fe nanocomposite under electron beam exposure conditions,” Nanoscale, vol. 8, issue 42, pp. 18221-18227, 2016. doi: 10.1039/c6nr06884g.

Q. Ma, “Phase composition and magnetic properties in nanocrystalline permanent magnets based on misch metal,” J. Magn. Magn. Mater., vol. 438, pp. 181-184, 2017. doi: 10.1016/j.jmmm.2017.03.012.

J. Chen, dan H. Javaheri, “Synthesis, characterization and applications of nanoparticles,” Fabrication and Self-Assembly of Nanobiomaterials, vol. 1, pp. 1-27, 2016. doi: https://doi.org/10.1016/B978-0-323-41533-0.00001-5.

C. Raab, M. Simkó, U. Fiedeler, M. Nentwich, dan A. Gazsó., “Production of nanoparticles and nanomaterials,” ITA Nanotrust Dossiers, vol. 6, pp. 1-4, 2011.

Azo Materials, “Using the high energy ball mill emax to test a new ppproach to mechanical alloying,” RETSCH GmbH. [Online] Available: https://www.azom.com/article.aspx?ArticleID=14342, 2017. [Accessed: 10, Jan, 2018].

J. A. Blackman, “Metallic nanoparticles,” Handbook of Metal Physics, vol. 5, pp. 1-385, 2008.

Copyright (c) 2018 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.