Ekstraksi Litium dari β – Spodumen Hasil Dekomposisi Batuan Sekismika Indonesia Menggunakan Aditif Natrium Sulfat [Lithium Extraction from β-Spodumene the Decomposition Product of Schist Mica Indonesia Using Sodium Sulphate as Additive]

Nadia Chrisayu Natasha, Latifa Hanum Lalasari, Miftakhur Rohmah, Johny Wahyuadi Sudarsono

Abstract

Spodumene is one of minerals that present in hard rock as lithium resources. Mineral for lithium resources in nature is α-phase spodumene. Requirement of lithium extraction from spodumene by leaching is the presence of β-form phase in ore because it has a porosity that makes it more reactive than α-form. Formation of β-phase spodumene was obtained from schist mica Kebumen, Center Java, Indonesia by roasting method using sodium sulfate at 650, 700, 750 and 800 oC for 20, 40 and 60 minutes. Leaching was done to determine the phase effect on lithium extraction percentage. The variations of solid and liquid ratio on this leaching are 1 : 15, 1 : 10, 1 : 5, 1 : 2 and 1 : 1 (g/mL). Leaching was done using aquadest for 1 h. STA (simultaneous thermal analysis) was used to determine reaction temperature between schist mica and sodium sulfate by thermal treatment. XRD (x-ray diffraction) and SEM (scanning electron microscopy) were used to examine the presence of spodumene phase, morphology and particle size. While the composition of schist mica was determined by ICP (inductively coupled plasma). In schist mica from Kebumen, Center Java, Indonesia indicates that spodumene exist in it. β-phase spodumene started to form at 700 oC for 20 minutes and it phase changed at 750 oC for 40 minutes become sanidine (AlLiO8Si3). Optimum value of extraction percentage from this investigation is 70.6% at 700 oC for 40 minutes.

 

Abstrak

Spodumen merupakan salah satu mineral yang terkandung di dalam batuan sebagai sumber litium. Mineral bahan baku litium ditemukan di alam dalam bentuk α – spodumen. Syarat utama dalam melakukan ekstraksi litium dari spodumen dengan metode leaching adalah fasa β – spodumen. Hal tersebut dapat terjadi karena fasa tersebut mempunyai poros yang membuatnya menjadi lebih reaktif jika dibandingkan dengan fasa α – spodumen.  Pembentukan fasa β – spodumen diperoleh dari batuan sekismika Indonesia dengan metode roasting menggunakan natrium sulfat sebagai aditif pada 650, 700, 750 dan 850 ºC selama 20, 40 dan 60 menit.  Proses leaching dilakukan untuk mengetahui pengaruh fasa yang terbentuk terhadap persen ekstraksi litium. Variasi perbandingan solid dan liquid pada proses leaching yaitu 1 : 15, 1 : 10, 1 : 5, 1 : 2 dan 1 : 1. Proses leaching dilakukan menggunakan aquadest selama 1 jam pada temperatur kamar. Analisis Simultaneous Thermal Analysis (STA) digunakan untuk menentukan temperatur reaksi antara sekismika dan natrium sulfat pada saat proses roasting. Analisis X – ray diffraction (XRD) dan Scanning Electron Microscope (SEM) dilakukan untuk analisis secara fisik dalam mengetahui perubahan fasa yang terbentuk, morfologi dan mapping. Sedangkan komposisi dari sekismika ditentukan dengan Inductively Coupled Plasma (ICP). Di dalam batuan sekismika, Kebumen Indonesia mengindikasikan adanya kandungan mineral spodumen. Fasa β – spodumen mulai terbentuk pada temperatur 700 ºC dan waktu roasting 20 menit namun fasa tersebut berubah pada 750 ºC dan waktu roasting 40 menit menjadi sanidine (AlLiO8Si3). Persen ekstraksi optimum litium yang diperoleh adalah 70,6% pada 700 ºC dan waktu roasting 40 menit.

Keywords

Spodumen; Litium; Sekismika; Roasting; Lithium; β-spodumen; schist mica; natrium sulphate

References

G. Martin, L. Rentsch, M. Hack, dan M. Bertau, “Lithium market research-global supply, future demand and price development,” Energy Storage Materials, vol. 6, pp. 171 – 179, 2016.

https://doi.org/10.1016/j.ensm.2016.11.004

P. K. Choubey, M. Kim, R. R. Srivastava, J. Lee, dan J. Lee, “Advance review on the exploitation of the prominent energy-storage element : Lithium. Part I : from mineral and brine resources,” Minerals Engineering, vol. 89, pp. 119-137, 2016.

https://doi.org/10.1016/j.mineng.2016.01.010

B. Swain, “Recovery and recycling of lithium : A review,” Separation and Purification Technology, vol.172, pp. 388-403, 2016.

https://doi.org/10.1016/j.seppur.2016.08.031

N. K. Salakjani, A. N. Nikoloski, dan P. Singh, “Mineralogical transformations of spodumene concentrate from greenbushes, western australia. Part 2 : Microwave heating,” Minerals Engineering, vol. 100, pp. 191-199, 2016.

https://doi.org/10.1016/j.mineng.2016.11.004

O. Peltosaari, P. Tanskanen, E. Heikkinen, dan T. Fabritius, “α-γ-β phase transformation of spodumene with hybrid microwave and conventional furnaces”, Minerals Engineering, vol. 82, pp. 54-60, 2015.

https://doi.org/10.1016/j.mineng.2015.04.012

N. K. Salakjani, P. Singh, dan A. N. Nikoloski, “Mineralogical transformations of spodumene concentrate from greenbushes, western australia. Part 1 : Conventional heating”, Minerals Engineering, vol. 98, pp. 71-79, 2016.

https://doi.org/10.1016/j.mineng.2016.07.018

J. W. An, D. J. Kang, K. T. Tran, M. J. Kim, T. Lim, dan T. Tran, “Recovery of lithium from uyuni salar brine”, Hydrometallurgy, vol. 117-118, pp. 64-70, 2012.

https://doi.org/10.1016/j.hydromet.2012.02.008

Rohib,”Studi ekstraksi litium dari mineral sugilite dengan metode roasting menggunakan kalium sulfat dan pelindian air,” Skripsi: Departemen Teknik Metalurgi dan Material Universitas Indonesia, 2013.

G. Svehla dan A. Vogel, Vogel’s Qualitative Inorganic Analysis, 7th ed. Longman Singapore Publisher (Pte) Ltd. 1997.

V. T. Luong, D. Jun, J. Woong, D. Anh, M. Jun, dan T. Tran, “Iron sulphate roasting for extraction of lithium from lepidolite,” Hydrometallurgy, vol. 141, pp. 8-16, 2014.

https://doi.org/10.1016/j.hydromet.2013.09.016

Copyright (c) 2018 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.