KINETIKA REAKSI PELARUTAN NIKEL DARI KALSIN NIKEL LATERIT [Kinetics of Nickel Dissolution from Nickel Laterite Calcine]
Abstract
Pada penelitian ini telah dilakukan percobaan untuk mempelajari kinetika reaksi pelarutan nikel dari kalsin nikel laterit ke dalam larutan asam sulfat. Kalsin yang digunakan, dipersiapkan melalui cara pemanggangan reduksi bijih nikel laterit pada temperatur 800 °C dengan reduktor 10% batubara. Percobaan pelarutan nikel dari kalsin nikel laterit dilakukan dalam reaktor gelas kapasitas 1 liter, dengan kondisi percobaan : a) konsentrasi asam sulfat yang digunakan sebagai pelarut adalah 0,1 mol/liter, b) laju aerasi udara divariasikan dari 0 liter/menit sampai 1 liter/menit, c) temperatur pelarutan divariasikan dari 40 °C sampai dengan 70 °C, dan waktu pelarutan divariasikan dari 15 menit sampai dengan 240 menit. Dari hasil percobaan diketahui bahwa proses pelarutan nikel dari kalsin nikel laterit ke dalam larutan asam sulfat makin meningkat jika laju aerasi dinaikkan dari 0 liter/menit menjadi 1 liter/menit, temperatur pelarutan dinaikkan dari 40 °C menjadi 70 °C dan waktu reaksi diperpanjang dari 15 menit sampai 180 menit. Dari hasil studi kinetika diketahui bahwa proses pelarutan nikel dari kalsin nikel laterit ke dalam larutan asam sulfat dikendalikan oleh proses difusi dengan nilai energi aktivasi 26,73 Kj/mol.
Abstract
At present work, an experiment to investigate a kinetics of nickel dissolution from nickel laterit calcine into
the aqueous sulphuric acid solutions were carried out by using the nickel laterites calcine which was
prepared by reduction roasting of nickel laterites oresby using 10% coal as reducing agents at temperature
800 °C. The dissolution test were caried out by using 1 litre capacities of glass reactor, with the experimental
conditions: a) a sulphuric acid concentration 0,1 mole/litre, b) aeration rate were varied from 0 litre/menit up
to 1 litre/menit, c)dissolution temperatures were varied from 40 °C up to 70 °C and reaction time were from
15 minutes up to 240 minutes. From the result of experiment, it is found that the dissolution of nickel from
nickel laterite calcine into the aqueous sulphuric acid solutions increased when the aeration rate were
increased from 0 litre/minute to 1 litre/minute, the dissolution temperatures were increased from 40 °C to 70
°C. From the kinetics study, it is found that the dissolution of nickel from nickel laterites calcines in to the
aqueous sulphuric acid solutions follows the diffusion processcontrolled with activated energy 26.73
Kj/mole.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Oxley Anne & Barcza Nic, “Hydro-pyro integration in the processing of nickel laterite,” International Journal of Minerals Engineering ., 54, hal. 2-13, 2013.
Shailesh, “a century of discoveries, inventors, and new Nickel alloys,” Journal of Metal ., September, hal. 18-20, 2006.
Lewis E Shoemaker and Gaylord D. Smith, “a century of Monel Metal: 1906-2006,” Journal of Metal ., September, hal. 22-26, 2006.
www.kemenperin.go.id, diunduh 15 juni 2015.
Rhamdhani, M.A., Hayes, P.C., Jak, E, “Nickel laterite Part 1 – microstructure and phase characterizations during reduction roasting and leaching,” Miner. Process. Extr. Metall. Rev. 3 ., Vol. (118), hal. 129– 145, 2009.
Anne & Barcza Nic, “Hydro-pyro integration in the processing of nickel laterite,” International Journal of Minerals Engineering ., 54, hal. 2-13, 2013.
Dalvi, A.D., Bacon, W.G., Osborne, R.C, “The past and future of nickel latertites,” In: PDAC 2004 International Convention ., March 7–10, hal. 1–27, 2004.
Departemen Pertambangan dan Energi, “Potensi dan Prospek Investasi di Sektor Pertambangan dan Energi 1998-1999,” 1998.
Peta Ekonomi Mineral Dit. Sumber daya Mineral Republik Indonesia, 1997.
G. Senanayake, J. Childs, B.D. Akerstrom, D. Pugaev, “Reductive acid leaching of laterite and metal oxides — A review with new data for Fe(Ni,Co)OOH and a limonitic ore,” Hydrometallurgy ., Vol. 110, hal. 13–32, 2011.
R.G. McDonald , B.I. Whittington, “Atmospheric acid leaching of nickel laterites review, Part I. Sulphuric acid technologies,” Hydrometallurgy ., Vol. 91, hal. 35–55, 2008. [12] R.G. McDonald , B.I. Whittington, “Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio- technologies,” Hydrometallurgy ., Vol. 91, hal. 56–69, 2008. [13] R.A. Bergman, “Nickel production from low iron laterite ores: Process description,” CIM. Bulletin ., Vol. 96. no. 1072, hal. 127- 138, 2003.
C.S Simons, “The production of nickel: Extractive Metallurgy – Past, present and future, Extractive Metallurgy of nickel and cobalt,” Prosidings of a sympoium, The Metallurgical society, CP Tyrorer and C.A landolt ed, TMS Annual meeting ., Phoenic Arizona, hal. 91-134, 1988.
C.M Diaz, C.A Landolt, A Vahed, A.E.M Warner and J.C Taylor, “ Extractive metallurgy of Nickel and Cobalt,” Procceeding of symposium, C.P. Tyroler and C.A Landolt Ed, The Metallurgical society ., May, hal. 211- 239, 1988.
Rudi Subagja, “Potensial – pH diagram sistem Cu-Fe-H 2 O berbasis komputer,” Prosiding Seminar Material Metalurgi, Pusat Penelitian Metalurgi LIPI., Desember, hal. 311- 319, 2013.
Octave Levenspiel , “Chemical reaction engineering,” 2nd ed, Wiley International ed , New York, 1972.
Wyadysyawa Mulak, Beata Miazga, Anna Szymczycha, “Kinetics of nickel leaching from spent catalyst in sulphuric acid solution,” Int. J. Miner. Process ., Vol 77, Hal. 231– 235, 2005.
Refbacks
- There are currently no refbacks.