Strukturmikro, Kekerasan, dan Ketahanan Korosi Baja Tahan Karat Martensitik 13Cr3Mo3Ni Hasil Quench-Temper dengan Variasi Temperatur dan Waktu Austenisasi [Microstructure, Hardness, and Corrosion Resistant of Martensitic Stainless Steel 13Cr3Mo3Ni after Quench-Temper with Various Austenization Temperature and Time]

Siska Prifiharni, Denni Ahmad, Andini Juniarsih, Efendi Mabruri

Abstract

Martensitic stainless steel type 410 have been extensively used for turbine blade in steam turbine system. Their properties can be improved in various ways, such as modification element and heat treatment. The modified stainless steel in this case is martensitic stainless steel 13Cr-3Mo-3Ni were hot forged then annealed. Afterwards, martensitic stainless steel 13Cr-3Mo-3Ni were prepared and heat treated. Martensitic stainless steel 13Cr-3Mo-3Ni were austenized at temperature 950, 1000, 1050, dan 1100 °C for 1 and 3 hour followed by quench in oil. After quenching, material were tempered at 650°C for 1 hour. Several examinations were carried out on the material such as of hardness test with rockwell C, metallographic using optical microscope, and corrosion test using CMS (corrosion measurement system). The results show that martensitic stainless steel 13Cr3Mo3Ni  at austenitizing temperature of 950 °C for 1 hour and tempering at 650 °C for 1 hour  has the lowest hardness value with hardness value was 33.5 HRC and the lowest corrosion rate 0.02 mpy, whereas  at austenitizing temperature of 1100 °C for 3 hours and tempering at 650 °C for 1 hour has the highest hardness value with hardness value was 46.2 HRC and the highest corrosion rate 1.62 mpy. The microstructures formed are martensite, carbide, and ferrite delta phases. Increased hardness at austenitizing temperature 1100 °C is due to an increase in carbide content in the martensite phase. However, carbide precipitation formed during quenching process can decrease corrosion resistance as Cr and Mo levels decrease in carbides.


Abstrak

Baja tahan karat martensitik tipe 410 biasa digunakan untuk aplikasi sudu turbin pada steam turbine. Perilaku baja tahan karat jenis ini dapat diperbaiki dengan berbagai cara, salah satunya yaitu dengan cara memodifikasi unsur baja tahan karat tipe 410 tersebut dan perlakuan panas. Baja tahan karat yang telah dimodifikasi dilakukan proses hot forging kemudian dianil. Sampel kemudian dipreparasi dan dilakukan proses perlakuan panas. Proses perlakuan panas yang dilakukan yaitu austenitisasi pada variasi suhu 950, 1000, 1050, dan 1100⁰C selama 1 dan 3 jam dan didinginkan dengan menggunakan media oli. Sampel yang telah diaustenitiasi dilakukan proses temper pada suhu 650⁰C selama 1 jam. Sampel tersebut kemudian dilakukan uji kekerasan, strukturmikro, dan ketahanan korosi yang terjadi setelah melalui proses perlakuan panas. Hasil menunjukkan bahwa nilai kekerasan dan laju korosi yang paling rendah pada suhu austenitisasi 950⁰C selama 1 jam dan paling tinggi pada suhu austenitisasi 1100⁰C selama 3 jam. Hal ini dapat terjadi karena adanya perubahan struktur martensit yang menjadi lebih kasar pada suhu austenitisasi yang lebih tinggi.

 

Keywords

Baja tahan karat martensitik 13Cr-3Mo-3Ni; austenisasi; martensit; kromium karbida; korosi; Martensitic stainless steel 13Cr-3Mo-3Ni; austenitization; martensi; chromium ;carbide corrosion

References

S. D. Cramer and B. S. Covino, ASM Handbook Volume 13C Corrosion: Environments and Industries, vol. 13. 2006.

A. N. Isfahany, H. Saghafian, and G. Borhani, “The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel,” J. Alloys Compd., vol. 509, no. 9, pp. 3931–3936, 2011.

I. Taji, M. H. Moayed, and M. Mirjalili, “Correlation between sensitisation and pitting corrosion of AISI 403 martensitic stainless steel,” Corros. Sci., vol. 92, pp. 301–308, 2015.

L. D. Barlow and M. Du Toit, “Effect of the austenitising heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420,” J. Mater. Eng. Perform., vol. 21, pp. 1327–1336, 2012.

I. Calliari, M. Zanesco, M. Dabala, K. Brunelli, and E. Ramous, “Investigation of microstructure and properties of a Ni – Mo martensitic stainless steel,” Mater. Des., vol. 29, pp. 246–250, 2008.

A. Rajasekhar, G. Madhusudhan Reddy, T. Mohandas, and V. S. R. Murti, “Influence of austenitizing temperature on microstructure and mechanical properties of AISI 431 martensitic stainless steel electron beam welds,” Mater. Des., vol. 30, no. 5, pp. 1612–1624, 2009.

G. S. Frankel, “Pitting Corrosion of Metals: A Review of the Critical Factors Pitting Corrosion of Metals,” J. Electrochem. Soc., vol. 145, no. 6, pp. 2186–2198, 1998.

K. Hashimoto, K. Asami, and A. Kawashima, “The role of corrosion-resistant alloying elements in passivity,” Corros. Sci., vol. 49, pp. 42–52, 2007.

E. Mabruri, M. Syaiful Anwar, S. Prifiharni, T. B. Romijarso, B. Adjiantoro., “Tensile properties of the modified 13Cr martensitic stainless steels Tensile Properties of the Modified 13Cr Martensitic Stainless Steels,” in AIP Conference Proceedings, vol. 1725, 2016.

E. Mabruri, M. S. Anwar, S. Prifiharni, T. B. Romijarso, and B. Adjiantoro, “Pengaruh Mo dan Ni Terhadap Strukturmikro dan Kekerasan Baja Tahan Karat Martensitik 13Cr,” Maj. Metal., vol. 30, no. 3, pp. 133–140, 2015.

S. Prifiharni, H. Perdana, T. B. Romijarso, B. Adjiantoro, A. Juniarsih, and E. Mabruri, “The Hardness and Microstructure of The Modified 13Cr Steam Turbine Blade Steel in Tempered Conditions.pdf,” Int. J. Eng. Technol., vol. 8, no. 6, pp. 2672–2675, 2017.

E. Mabruri, Z. A. Syahlan, . S., M. S. Anwar, T. B. Romijarso, and B. Adjiantoro, “Effect of Tempering Temperature on Hardness and Impact Resistance of the 410- 1Mo Martensitic Stainless Steels for Steam Turbine Blades,” Int. J. Eng. Technol., vol. 8, no. 6, pp. 2547–2551, 2016.

V. Thursdiyanto, E. Bae, and E. Baek, “Effect of Ni Contents on the Microstructure and Mechanical Properties of Martensitic Stainless Steel Guide Roll by Centrifugal Casting,” J. Mater. Sci. Technol., vol. 24, no. 3, pp. 343–346, 2008.

S. Zhen, “Effect of Heat Treatment on the Microstructure and Mechanical Properties of Steel,” Key Eng. Mater., vol. 336–338, pp. 1291–1293, 2007.

M. S. Anwar, S. Prifiharni, and E. Mabruri, “Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel,” in IOP Conference Series: Materials Science and Engineering, vol. 202, p. 12037, 2017.

M. D. Shen, C. H. Xiao, Z. Jian, and Y. Q. Long, “Microstructure and Mechanical Properties of Martensitic Stainless Steel 6CrlSMoV,” J. Iron Steel Res., vol. 19, no. 3, pp. 56–61, 2012.

S. Prifiharni, M. S. Anwar, and E. Mabruri, “Pengaruh Perlakuan Panas terhadap Strukturmikro dan Ketahanan Korosi Baja Tahan Karat Martensitik 13Cr-1Mo,” Widyariset, vol. 2, no. 1, pp. 9–16, 2016.

A. Kumar, G. M. Reddy, and K. S. Rao, “Pitting corrosion resistance and bond strength of stainless steel overlay by friction surfacing on high strength low alloy steel,” Def. Technol., vol. 11, no. 3, pp. 299–307, 2015.

J. Y. Park and Y. S. Park, “The effects of heat-treatment parameters on corrosion resistance and phase transformations of 14Cr-3Mo martensitic stainless steel,” Mater. Sci. Eng. A, vol. 448–451, pp. 1131–1134, 2007.

E. Mabruri, Z. A. Syahlan, Sahlan, S. Prifiharni, M. S. Anwar, S. A. Chandra, T. B. Romijarso, B. Adjiantoro, “Influence of Austenitizing Heat Treatment on the Properties of the Tempered Type 410-1Mo Stainless Steel,” in IOP Conference Series: Materials Science and Engineering, vol. 202, no. I, p. 12085, 2017.

R. F. A. Jargelius-Petterson and B. G. Pound, “Examination of the Role of Molybdenum in Passivation of Stainless Steels Using AC Impedance Spectroscopy,” J. Electrochem. Sci., vol. 145, no. 5, pp. 1462–1469, 1998.

I. Olejford and L. Wegrelius, “Surface Analysis of Passive State,” Corros. Sci., vol. 31, pp. 89–98, 1990.

Copyright (c) 2017 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.