PREPARASI, SINTESIS Dan KARAKTERISASI MATERIAL CaMnO3 [Preparation, Synthesis and Characterization of CaMnO3 Material]
Abstract
CaMnO3 merupakan senyawa oksida dengan potensi aplikasi yang cukup luas, salah satunya yaitu thermoelectric. Sintesis CaMnO3 menggunakan bahan baku gugus karbonat berhasil dilakukan melalui metode reaksi padatan. Sintesis diawali dengan pencampuran kedua bahan baku secara stoikiometri dan dilanjutkan dengan penggerusan, kalsinasi, peletisasi dan penyinteran pada variasi suhu 1100, 1200 dan 1250oC. Pengamatan XRD menunjukkan kecenderungan pola difraksi yang sama pada tiap temperatur serta menunjukkan terbentuknya fasa tunggal CaMnO3. Nilai parameter kisi kristal CaMnO3 hasil penghalusan menggunakan metode Rietvield dengan sistem kristal orthorombic dan space group Pnma adalah a = ~5,26 Å; b = ~7,44 Å; dan c = ~5,27 Å. Mikrostruktur yang ditampilkan oleh mikroskop elektron menunjukkan bahwa semakin tinggi suhu, ukuran butir akan semakin kecil dan kerapatan butir semakin meningkat.
Abstract
CaMnO3 is metal oxide compound with wide potential applications i.e thermoelectric. Synthesis of CaMnO3
using carbonat groups material has been succesfully carried out through solid state reaction method. It is
started by mixing of both CaCO3 and MnCo3 raw materials at a stoichimometri composition and followed by
grinding, calcinating, pelletizing and sintering at various temperatures of 1100 oC, 1200 oC and 1250 oC. XRay
diffraction results for all specimens show similar pattern at each temperature condition, namely the
formation of single phase CaMnO3. Crystal lattice from refinement with Rietviled method that has been
identified in orthorombic crystal system and Pnma space group was a = ~5,26 Å; b = ~7,44 Å; dan c = ~5,27
Å. Microstructure of CaMnO3 phase shows that increasing temperature will increase grain density and reduce
grain space.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
J. W. Park, D. H. Kwak, S. H. Yoon, and S. C. Choi, “Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature,” J. Alloys Compd., vol. 487, no. 1–2, pp. 550–555, 2009.
F. P. Zhang, Q. M. Lu, X. Zhang, and J. X. Zhang, “First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide,” J. Alloys Compd., vol. 509, no. 2, pp. 542–545, 2011.
J. W. Fergus, “Oxide materials for high temperature thermoelectric energy conversion,” J. Eur. Ceram. Soc., vol. 32, no. 3, pp. 525–540, 2012.
D. Prakash, R. D. Purohit, M. Syambabu, and P. K. Sinha, “Development of High Temperature Thermoelectric Materials and Fabrication of Devices,” BARC Newsletter, no. 320, pp. 17–25, 2011.
K. R. Poeppelmeier, M. E. Leonowicz, J. C. Scanlon, J. M. Longo, and W. B. Yelon, “Structure determination of CaMnO3 and CaMnO2.5 by X-ray and neutron methods,” J. Solid State Chem., vol. 45, no. 1, pp. 71–79, 1982.
H. Taguchi, M. Nagao, T. Sato, and M. Shimada, “High-temperature phase transition of CaMnO3−δ,” J. Solid State Chem., vol. 78, no. 2, pp. 312–315, 1989.
N. Pandey, “Studies on dielectric behaviour of an oxygen ion conducting ceramic - CaMnO3-,” Indian J. Eng. Mater. Sci., vol. 15, no. April, pp. 191–195, 2008.
H.S. Horowitz and J.M. Longo, “Phase Relations in The Ca-Mn-O System,” Mat. Res. Bull, vol. 13, pp. 1359–1369, 1978.
W. R. R. and A. M. B. Brezny, “ACTIVITY-COMPOSITION RELATIONS IN CaO-MnO SOLID SOLUTIONS AT l l00- 1300°C,” Mat. Res. Bull, vol. 5, no. 68, pp. 481–488, 1970.
I. Halikia, L. Zoumpoulakis, E. Christodoulou, and D. Prattis, “Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis,” Eur. J. Miner. Process. Environ. Prot., vol. 1, no. 2, pp. 89–102, 2001.
L. Biernacki and S. Pokrzywnicki, “The thermal decomposition of manganese carbonate Thermogravimetry and exoemission of electrons,” J. Therm. Anal. Calorim., vol. 55, pp. 227–232, 1999.
K. Qian, Z. Qian, Q. Hua, Z. Jiang, and W. Huang, “Author ’ s personal copy Structure – activity relationship of CuO / MnO 2 catalysts in CO oxidation,” Appl. Surf. Sci., vol. 273, pp. 357–363, 2013.
M. Santiago-Teodoro, L. Hernández-Cruz, H. Montiel-Sánchez, G. Álvarez-Lucio, M. A. Flores-González, and F. Legorreta-García, “Synthesis, microstructure and EPR of CaMnO 3 and Eu xCa 1-xMnO 3 manganite, obtained by coprecipitation,” J. Mex. Chem. Soc., vol. 55, no. 4, pp. 204–207, 2011.
A. C. Larson and R. B. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos Natl. Lab. Rep. LAUR 86-748, vol. 748, 2004.
Q. Zhou and B. J. Kennedy, “Thermal expansion and structure of orthorhombic CaMnO3,” J. Phys. Chem. Solids, vol. 67, no. 7, pp. 1595–1598, 2006.
K. Nakade, K. Hirota, M. Kato, and H. Taguchi, “Effect of the Mn3+ ion on electrical and magnetic properties of orthorhombic perovskite-type Ca(Mn1-xTix)O3-??,” Mater. Res. Bull., vol. 42, no. 6, pp. 1069–1076, 2007.
J. Dukić, S. Bošković, and B. Matović, “Crystal structure of Ce-doped CaMnO3 perovskite,” Ceram. Int., vol. 35, no. 2, pp. 787–790, 2009.
Refbacks
- There are currently no refbacks.