SINTESIS LiBOB DAN ANALISA STRUKTUR KRISTALNYA [Synthesis and Analysis Crystalline Structure LiBOB]

etty marti wigayati

Abstract

Litium Bis(Oksalato) Borat atau LiBOB merupakan garam Lithium yang saat ini mulai dikembangkan sebagai elektrolit alternatif untuk baterai Li-Ion. Elektrolit padat LiBOB dianggap lebih ramah lingkungan, LiBOB juga memiliki stabilitas panas yang cukup tinggi yakni sebesar 302 °C. Penelitian ini bertujuan untuk mensintesis LiBOB kemudian untuk mengetahui struktur kristalnyadan untuk mengetahui durasi sintering yang optimum. Sintesis LiBOB (Lithium bis oksalat borat)dilakukan melalui metoda solid state reaction. Bahan awal dicampur hingga homogen. Kalsinasi dilakukan pada temperatur 120 °C,ditahan selama 2 jam dilanjutkan dengan sintering pada temperatur 240 °C dengan penahanan dilakukan secara bervariasi yaitu 2 jam, 3 jam, dan 4 jam. Untuk mengetahui fasa yang terbentuk dilakukan karakterisasi dengan XRD. Dari hasil analisis XRD dapat diidentifikasi fasa yang terjadi pada waktu penahanan 2 jam masih muncul fasa dari bahan awal, LiBOB hidrat dan beberapa fasa impuritas. Pada waktu penahanan 3 jam terbentuk fasa LiBOB hidrat dan H3BO3. Pada penahanan 4 jam muncul fasa LiBOB dan LiBOB hidrat serta beberapa fasa impuritas. Sampel dengan penahanan 4 jam merupakan sampel yang paling optimum mendekati karakteristik kristal LiBOB dan LiBOB Hidrat pada sampel LiBOB komersial. Struktur kristal LiBOB yang terbentuk adalah orthorombik dengan nilai a, b, dan c sebesar 5.74 Å, 6,79 Å, dan 14,45 Å dengan sudut α = β = γ = 90°, grup ruangPnma (62), serta nilai FoM 1,386. Sementara struktur kristal LiBOB Hidrat juga orthorombik namun dengan nilai a, b, dan c sebesar 16,119 Å, 15,913 Å, dan 5,6182 Å dengan sudut α = β = γ = 90°, grup ruang Pbca (61), serta nilai FoM 0,824.

 

Abstract

Lithium Bis ( Oxalato ) Borate(LiBOB) as lithium salt that is currently being developed as an alternative
electrolytes for Li - Ion battery. LiBOB electrolyte is considered more environmentally friendly, LiBOB also
have a fairly high heat stability which is equal to 302 ºC.This research aims to synthesize LiBOB thento
determine the crystal structure and the optimum duration of sintering.At present work, the synthesis of
Lithium Bisoxalato Borate (LiBOB) was done by solid-state reaction method. The raw materials was mixed
homogeneously. These samples were calcinated at 120 ºC for about 2 hours then sintered at 240 ºC with
various durations (2, 3, and 4 hours). XRD characterization was done for identifying phases. From XRD
interpretation, there are LiBOB Hydrate and other impurities at two-hour sintered sample. There are LiBOB
Hydrate and H3BO3 at three-our sintered sample. There are LiBOB, LiBOB Hydrate, and other impurities at
four-hour sintered sample. The sample with 240 ºC/4 hour parameter is the most optimum sample based on
the convergention to the LiBOB and LiBOB Hydrate phases at standard commercial LiBOB sample (Sigma
Aldric). The crystal system of the LiBOB phase is orthorombic with lattice parameters a = 5.74 Å, b = 6.79
Å, c = 14.45 Å, α = β = γ = 90º, space groupPnma (62), and FoM 1.386. On the other hand, the crystal system
of LiBOB Hydrate phase is also orthorombic with lattice parameters a = 16.119 Å, b = 15.913 Å, c = 5.6182
Å, α = β = γ = 90º, space group Pbca (61), and FoM 0.824.


Keywords

Lithium bis (Oksalato) borat; Solid state reaction; Waktu sintering; FoM; Struktur kristal; Lithium bis (Oksalato) Borate; Solid-state reaction; Sintering duration; FOM; Crystal system

References

David Linden, “Handbook of Batteries,” McGraw-Hill, 2002.

Ella Zinigrad, Liraz Larush-Asraf et al, “On the thermal bihavier of Li bis(oxalato)borate LiBOB,” Thermochimica Acta .,Vol. 457 Issue 1-2, pp. 64-69, 2007.

Yan-Hua Li, Xing-Long Wu, Jee-Hoon Kim, Sen Xin, Jing Su, Yang Yan, Jong- Sook Lee, Yu-Guo Guo , “ A novel polymer electrolyte with improved high-temperature tolerance up to 170 °C for high-temperature lithium-ion batteries,” Journal of Power Sources ., Vol. 244, pp. 234-239, 2013.

W. Xu and C.A Angell, “LiBOB and Its Derivatives: Weakly Coordinating Anions, and Exceptional Conductivity of Their Nonaqueous Solutions,” Electrochemical and Solid-State Lett. 4 .,Vol 4 Iss.3, pp. L3, 2001.

Li-Zhen Fan. Taofeng Xing. Rafi Awan. Weihua Qiu, “Studies on lithium bis (oxalato)-borate/propilene carbonate-based electrolytes for Li-ion batteries,” Ionics ., Vol. 17, pp. 491-494, 2011.

Fadhel Azeez, Peter S Fediw, “Conductivity of LiBOB-based electrolyte for lithium-ion batteries,” Journal of Power Sources ., Vol. 195, pp. 7627-7633, 2010.

Yet–Ming Chiang Dunbar P.Birnie,III, W.D Kingery, “Physical Ceramics:Principles for Ceramic Science and Engeneering,” John Willey & Sons ., Inc, 1997.

G. S. Smith and R. L. Snyder, “A Criterion for Rating Powder Diffraction Patterns and Evaluating the Reliability of Powder- Pattern Indexing,” J. Appl. Cryst ., Vol. 12, pp. 60-65, 1979.

Etty MW, Titik L, “Pengaruh waktu sintering pada pembuatan material aktif Lithium bis Oksalat Borat,” Prosiding Seminar Nasional IPT, yang diselenggarakan oleh PPET LIPI., Yogyakarta 3 Oktober 2013, ISSN: 2303- 0798, hal.59-62, 2013.

Bi-Tao Y, Wei-Hua Q, Fu-Shen L, Li-Fen L, “Kinetic study on solid state reaction for synthesis of LiBOB,” J. Power Sources., Vol.174, hal. 1012–101, 2007.

Copyright (c) 2015 Majalah Metalurgi

Refbacks

  • There are currently no refbacks.