Ketahanan Korosi Paduan Cu-Zn 70/30 Setelah Proses Thermomechanical Controlled Process (TMCP) [Corrosion Resistance of Cu/Zn 70/30 Alloy from Thermomechanical Controlled Process (TMCP)]

Eka Febriyanti, Ayu Rizeki Ridhowati, Rini Riastuti

Abstract

Cu-Zn alloy (70/30) alloy is widely used as water tubing in industrial application. From some references reveal that chloride ion exist along pipeline. Interaction between chloride ion and Cu-Zn alloy promote corrosion process then reduce the tube performance. The aim of this research is to improve the corrosion resistance of Cu-Zn alloy by developing TMCP (thermo mechanical controlled process). The specimens are warm rolled at 300°C with reverse rolling system at deformation 25%, 30%, and 35%. Corrosion resistance of specimen is then measured by polarisation method using 0.1 M HCl. Experimental results indicate that by increasing reduction from 31.61% to 48.39%, the corrosion rate decrease from 0.564 mm/year to 0.426 mm/year. 

Abstrak

Paduan Cu-Zn (70/30) kerap digunakan sebagai saluran pipa untuk menyalurkan air. Pada saluran pipa tersebut umumnya ditemukan ion klorida. Produk korosi yang terbentuk pada paduan Cu-Zn akibat interaksi dengan ion Cl- dapat menurunkan efisiensi kerja alat. Oleh karena itu, pada penelitian ini digunakan metode pengembangan lebih lanjut untuk meningkatkan ketahanan korosi paduan Cu-Zn dengan Thermomechanical Control Process (TMCP). Pengerjaan warm rolling dilakukan dengan metode bolak-balik sebanyak 2x25%, 2x30%, dan 2x35% pada suhu 300oC ditambah dengan pemanasan selama 120 menit untuk mengurangi efek pengerasan ketika TMCP sebelum pass kedua dilakukan. Dari hasil penelitian didapatkan bahwa dengan peningkatan reduksi dari sebesar 31,61% hingga 48,39%, ukuran diameter butir rata-rata menurun dari 50.53μm menjadi 24.41μm menyebabkan penurunan laju korosi dari 0.564 mm/year menjadi 0.426 mm/year.

Keywords

Paduan Cu-Zn 70/30; Warm rolling; Anil; Waktu tahan; Butir halus; Laju korosi; TMCP; Annealing; Hardening effect; Corrosion rate

References

M.M Al-Abdallah, A.K. Maayta, M.A Al-Qudah, and N.A.F. Al-Rawashdeh, “Corrosion Behavior of Copper in Chloride Media”, The Open Corrosion Journal, (2009) vol. 2, hal.71-76

S. Fréchard , A. Redjaïmia, E. Lach and A. Lichtenberger, “Mechanical Behaviour of Nitrogen-Alloyed Austenitic Stainless Steel Hardened by Warm Rolling”, Materials Science and Engineering A, (2006), vol.415, hal. 219-224.

I. Kozasu, Materials Science and Technology Vol.7 Constitution and Properties of Steels Ed,. VCH., 184, 1993.

Eka Febriyanti, Pengaruh Temperatur Canai Hangat dan Derajat Deformasi terhadap Sifat Mekanis dan Morfologi Struktur Paduan Cu-Zn 70/30, Tesis, 2015.

ASTM B36M-13, “Standard Specification for Brass Plate, Sheet, Strip, and Rolled Bar”,

ASTM E3-01, 2003, “Standard Guide for Preparation for Metallographic Specimens”

ASTM E112, 2003, “Standard Test Methods for Determining Average Grain Size.”

K.D. Ralston, N. Birbilis, and C.H.J. Davies, “Revealing the relationship between grain size and corrosion rate of metals”, Scripta Materialia, (2010), vol.63, hal.1201–120

K.D Ralston, N. Birbilis. Effect of Grain Size on Corrosion : A Review. Corrosion 6, 2010, hal. 1-13,

Birbilis N et. al., “Grain character influences on corrosion of ECAPed pure magnesium”, Corrosion Engineering, Science and Technology, (2010), Vol. 45, No 3

Copyright (c) 2017 Metalurgi
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.