PRELIMINARY STUDY OF ELASTICITY ON BINARY ALLOY

Andika Widya Pramono, Anton Suryantoro

Abstract

Apabila setiap komponen dari suatu campuran logam memiliki modulus elastisitas atau struktur kisi (lattice structures)  yang  berbeda,  efek  elastis  akan berpengaruh  pada laju  coarsening serta  morfologi  fasa  yang terbentuk.  Dalam hal  ini  efek  mekanis  yang ditimbulkan  oleh fenomena  elastisitas  ini  lebih  dominan dibandingkan dengan laju difusi dari proses coarsening. Efek elastis mekanis ini kemudian dapat berpengaruh kepada sifat mekanis dari campuran logam tersebut. Makalah ini menyajikan gambaran awal bagaimana efek elastisitas tersebut dapat dikaji dengan menggunakan pendekatan elemen hingga (finite element) melalui penggunaan persamaan Cahn-Hilliard  yang  dilanjutkan dengan Persamaan Parabola Orde  Keempat.  Model Cahn Hilliard dengan efek elastisitas dikembangkan berdasarkan persamaan energi bebas Ginzburg–Landau yang merupakan fungsi dari perbedaan konsentrasi.

 

Abstract

If the components of the mixture have different elastic moduli or different lattice structures, elastic effects might influence the rate of coarsening and the morphology of the particles. In this case the aspect of quasi-static equilibrium for the mechanical part is more predominant than the diffusion mechanism. The resulting elastic effects have a pronounced impact on the evolving coarsening morphology and hence on the material properties. This paper tries to give preliminary consideration on how this elastic behavior is analyzed through finite element approximation using Cahn Hiliard Approach followed by Fourth Order Nonlinear Degenerate Parabolic Equation. Cahn–Hilliard model with elastic contributions is based on a Ginzburg–Landau free energy which is a functional in terms of the concentration difference.

Keywords

Elastisitas; struktur kisi; pendekatan Cahn-Hilliard; energi bebas Ginzburg Landau; Elasticity; Lattice structures; Cahn-Hilliard approach; Ginzburg-Landau free energy

References

Brochure “Superconductivity: Present and future Applications” by Coalation for the Commercial Application of Superconductors (CCAS) and IEEE council on Superconductivity, 2008.

Smith, W.F., Principles of Materials Science and Engineering, 3 nd Edition, McGraw -Hill, 1996, p. 855.

Larbalesteir, D., Superconductors for superconducting magnets, Applied superconductivity Center, National High Magnetic Field Laboratory, Florida State University, May 20, 2010.

Lee, P. J. : “Superconductor: WIRES AND CABLES: MATERIALS AND PROCESSES”, The Applied Superconductivity Center, University of Wisconsin, Madison, USA.

Hopkins, S. C., Optimisation, Characterisation and Synthesis of Low Temperaturs Supercoductors by Current- Voltage Techniques, PhD Thesis, Sidney Sussex College, Department of Materials Science and Metalurgy, 2007.Fischer, C. M., Investigation of the Relationships Between Superconducting Properties and Nb 3 Sn Reaction Conditions in Powder-In -Tube Nb 3 Sn Conductors, Master of Science Thesis, University of Wisconsin -Madison, 2002.

Patankar, S. N and Froes, F. H. Formation of Nb 3 Sn Using Mecha nically Alloyed Nb -Sn Powder. Institute for Materials and Advanced Processes, University of Idaho, Moscow.

Copyright (c) 2015 Majalah Metalurgi

Refbacks

  • There are currently no refbacks.