Struktur Mikro, Sifat Mekanik, Dan Ketahanan Korosi Paduan Mg-Zn-Ca Yang Dihasilkan Melalui Proses Metalurgi Serbuk [Microstructure, Mechanical And Corrosion Properties of Mg-Zn-Ca Alloy via Powder Metallurgy]
Abstract
Magnesium (Mg), known for its biodegradable and biocompatible properties, currently is being developed for biodegradable implant material. Unfortunately, application of Mg in biomedical devices was limited due to its low mechanical strength and low corrosion resistance. In this study, powder metallurgy was selected to process Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in weight%) alloys. Holding time of sintering were varied for five and ten hours. Microstructure of Mg alloy was characterized by SEM (scanning electron microscope) and also XRD (x-ray diffraction). Compression testing was done to show the mechanical strength of Mg alloy, while corrosion resistance was examined through electrochemical testing. This study showed that ten hours of sintering time would increase mechanical properties of Mg alloy but would reduce corrosion resistance. The lowest corrosion rate was 0.32 mmpy given by Mg-29Zn-1Ca alloy and Mg-53Zn- 4Ca alloy which were sintered for five hours. Therefore, sintering time for five hours was found to be the optimum time to process Mg-Zn-Ca alloy for biodegradable implant material.
Abstrak
Magnesium (Mg), dengan kemampuan mampu luruh dan biokompatibilitas, merupakan salah satu logam yang kini dikembangkan sebagai material implan mampu luruh. Namun, penggunaan Mg dalam aplikasi biomedis masih terkendala kekuatan dan ketahanan korosi yang rendah. Pada penelitian kali ini proses metalurgi serbuk dipilih untuk membuat paduan Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (dalam %berat) dengan variasi waktu tahan sintering lima jam dan sepuluh jam. Pengaruh waktu tahan sintering dikaji dari segi kekuatan tekan dan ketahanan korosi paduan. Karakterisasi struktur mikro paduan Mg dilakukan dengan menggunakan scanning electron microscope (SEM) dan juga x-ray diffraction analysis (XRD). Dilakukan pengujian tekan untuk mengetahui nilai kekuatan paduan sedangkan ketahanan korosi dianalisis dengan menggunakan pengujian elektrokimia. Waktu tahan sintering selama 10 jam akan meningkatkan kekuatan mekanik namun menurunkan ketahanan korosi paduan. Laju korosi yang terbaik (0,32 mmpy) ditunjukkan oleh paduan Mg-29Zn-1Ca dan Mg-53Zn-4Ca dengan waktu tahan lima jam. Oleh karena itu, waktu tahan sintering yang optimum adalah lima jam untuk menghasilkan paduan Mg-Zn-Ca untuk material implan.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang, and W. Wang, "Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses," Biomaterials, vol. 31, pp. 1093-1103, 2// 2010.
W.-C. Kim, J.-G. Kim, J.-Y. Lee, and H.-K. Seok, "Influence of Ca on the corrosion properties of magnesium for biomaterials," Materials Letters, vol. 62, pp. 4146-4148, 9/30/ 2008.
H. R. Bakhsheshi-Rad, E. Hamzah, A. Fereidouni-Lotfabadi, M. Daroonparvar, M. A. M. Yajid, M. Mezbahul-Islam, et al., "Microstructure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications," Materials and Corrosion, vol. 65, pp. 1178-1187, 2014.
M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, "Magnesium and its alloys as orthopedic biomaterials: A review," Biomaterials, vol. 27, pp. 1728-1734, 2006.
Y. Q. Wang, M. Z. Li, C. Li, X. Y. Li, L. Q. Fan, and T. Jia, "The effect of Ca on corrosion behavior of heat-treated Mg–Al–Zn alloy," Materials and Corrosion, vol. 63, pp. 497-504, 2012.
E. Zhang, D. Yin, L. Xu, L. Yang, and K. Yang, "Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application," Materials Science and Engineering: C, vol. 29, pp. 987-993, 4/30/ 2009.
Z. Li, X. Gu, S. Lou, and Y. Zheng, "The development of binary Mg–Ca alloys for use as biodegradable materials within bone," Biomaterials, vol. 29, pp. 1329-1344, 4// 2008.
Y. Sun, B. Zhang, Y. Wang, L. Geng, and X. Jiao, "Preparation and characterization of a new biomedical Mg–Zn–Ca alloy," Materials & Design, vol. 34, pp. 58-64, 2// 2012.
Z. S. Seyedraoufi and S. Mirdamadi, "Synthesis, microstructure and mechanical properties of porous Mg-Zn scaffolds," Journal of the Mechanical Behavior of Biomedical Materials, vol. 21, pp. 1-8, 2013.
G. J. Kipouros, W. F. Caley, and D. P. Bishop, "On the advantages of using powder metallurgy in new light metal alloy design," Metallurgical and Materials Transactions A, vol. 37, pp. 3429-3436, 2006.
M. Yusoff and Z. Hussain, "Effect of Sintering Parameters on Microstructure and Properties of Mechanically Alloyed Copper-Tungsten Carbide Composite," International Journal of Materials, Mechanics and Manufacturing IJMMM, vol. 1, pp. 283-286, August 2013 2013.
H. Kuwahara, Y. Al-Abdullat, N. Mazaki, S. Tsutsumi, and T. Aizawa, "Precipitation of Magnesium Apatite on Pure Magnesium Surface during Immersing in Hank’s Solution," MATERIALS TRANSACTIONS, vol. 42, pp. 1317-1321, 2001.
S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, et al., "Research on an Mg–Zn alloy as a degradable biomaterial," Acta Biomaterialia, vol. 6, pp. 626-640, 2// 2010.
Y. F. Zheng, X. N. Gu, and F. Witte, "Biodegradable metals," Materials Science and Engineering: R: Reports, vol. 77, pp. 1-34, 2014.
H. R. A. Bidhendi and M. Pouranvari, "Corrosion Study of Metallic Biomaterials in Simulated Body Fluid," Metalurgija- MJoM, vol. 17, pp. 13-22, 2011.
N. T. Kirkland, N. Birbilis, J. Walker, T. Woodfield, G. J. Dias, and M. P. Staiger, "In-vitro dissolution of magnesium–calcium binary alloys: Clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 95B, pp. 91-100, 2010.
Refbacks
- There are currently no refbacks.