FABRIKASI NANOROD SENG OKSIDA (ZnO) MENGGUNAKAN METODE SOL-GEL DENGAN VARIASI KONSENTRASI POLYETHYLENE GLYCOL DAN WAKTU TUNDA EVAPORASI AMONIA

Akhmad Herman Yuwono

Abstract

Seng  oksida  (ZnO)  adalah  salah  satu  material  semikonduktor  yang  banyak  digunakan  dalam  aplikasi katalitik, elektronik dan optoelektronik. Pada penelitian ini, ZnO nanorods telah berhasil disintesis menggunakan metode sol-gel dengan campuran (Zn(NO3 ) 2 .4H2 O), NH4 OH, dan polyethylene glycol (PEG). Variasi pada konsentrasi PEG dan penahanan laju evaporasi amoniak pada larutan telah dilakukan dan nanorod ZnO yang dihasilkan dikarakterisasi dengan XRD dan SEM untuk menginvestigasi perbedaan diameter, morfologi dan tingkat nanokristalinitas nanorod ZnO. Penambahan PEG dari 1 hingga 3 gram pada larutan meningkatkan ukuran diameter rata-rata nanorods dari 157 menjadi 464 nm. Namun demikian tidak didapatkan adanya peningkatan  ukuran  nanokristalit ZnO  di dalam  struktur  solid  nanorod  tersebut.  Pada  variasi  waktu  tunda evaporasi amonia selama 1 dan 2 jam, terjadi penurunan diameter nanorod menjadi 410 dan 328 nm, sebagai perbandingan terhadap diameter nanorod ZnO tanpa proses penundaan evaporasi ammonia yang mencapai 464 nm. Sebaliknya, besar kristalit di dalam struktur nanorod ZnO bertambah dari 121,49 menjadi 166,59 nm sejalan dengan penambahan waktu tunda evaporasi ammonia dari 1 hingga 2 jam, sebagai perbandingan terhadap ukuran kristalit nanorod ZnO tanpa proses penundaan evaporasi ammonia yang hanya mencapai 94,77 nm.

 

Abstract

Zinc oxide (ZnO) is one of semiconductor materials which has been widely used for catalytic, electronic and optoelectronic applications. In the present research, ZnO nanorod has been successfully synthesized through a sol-gel method using (Zn(NO3)2.4H2O), NH4
Keywords: ZnO nanorods, PEG concentration, Evaporation delay time, Crystallinity OH, and polyethylene glycol (PEG) precusrors. Variation in PEG concentration and ammonia evaporation delay time were performed and the resulting ZnO nanorods were characterized by XRD and SEM to investigate the difference in diameter, morphology and nanocrystallinity. It was revellead that the addition of PEG concentration from 1 to 3 grams has increased the average diameter of ZnO nanorods from 157 to 464 nm. However, there was no an increase in the crystallite size on those nanorod solid structures. The ammonia evaporation delay time from 1 to 2 hours has resulted in a deacrease in the average diameter of ZnO nanorods from 410 to 328 nm, in comparison to those of without evaporation delay time which can reach up to 464 nm. By contrast, the average crystallite size of ZnO phase in the nanorod structures has increased from 121.49 to 166.59 nm when the evaporation delay time was prolonged from 1 to 2 hours, as compared to those of without evaporation delay time which can only reach 94.77 nm in size.

Keywords

Nanorod ZnO; Konsentrasi PEG; Waktu tunda evaporasi; Kristalinitas; ZnO nanorods; PEG concentration; Evaporation delay time; Crystallinity

References

R.E. Service, “Materials Science- Will UV lasers beat the blues,” Science, 276, 895 (1997).

C.M. Jin, A. Tiwari and R.J. Narayan, J.Appl.Phys. 98, 083707 (2005).

M.Huang, S.Mao, H.Feick, HQ. Yan, Y.Y. Wu, H.Kind, E.Weber, R.Russo and P.D. Yang, Science, 292, 1897 (2001).

Y.R. Ryu, T.. Lee, J.A. Lugbuban, H.W. White, B.J. Kim, Y.S. Park and C.J. Youn, Appl. Phys. Lett. 88, 241108 (2006).

S.H. Park, S.H. Kim and S.W. Han, Nanotechnology, 18, 055608 (2007).

Z.P. Wei, Y.M. Lu, D.Z.Shen, Z.Z. Zhang, B.Yao, B.H. Li, J.Y. Zhang, D.X. Zhao, X.W.Fan and Z.K. Tang, Appl. Phys. Lett. 90, 042113 (2007).

F.Demangeot, V.Paillard and P.M. Chassaing, Appl. Phys. Lett. 88, 071921 (2006).

Y.H. Choo, J.Y. K im and H.S. Kwack, Appl. Phys. Lett. 89, 201903 (2006).

B.D. Cullity, Elements of X-ray Diffraction , 2 nd

Z. Xingfu, American Chemical Society, Nanjing University, 2006. ed., Addison -Wesley Reading, Massachusetts ( 1978).

L. Zhengquan, Y.Xiong, Y. Xie, Inorganic Chemistry -University of Science and Technology of China (2003).

Z. Hongxia, Preparation of ZnO Nanorods through Wet Chemical Method. Elsevier: Harbin Engineering ,,University ( 2007) .

D. Banerjee, Large Hexagonal Arrays of Aligned ZnO Nanorods. Mat erial Science and Processing: Boston College (2004).

Copyright (c) 2015 Majalah Metalurgi

Refbacks

  • There are currently no refbacks.