

METALURGI

METALURGI

PERUBAHAN FASA DALAM PEMBUATAN SERBUK LIFePO₄ Dengan Tiga Tahap Perlakuan Panas Tanpa Pelapisan Karbon

R. Ibrahim Purawiardi*, Christin Rina Ratri, Endang Suwandi

Pusat Penelitian Fisika - LIPI, Tangerang Selatan 15314, Indonesia E-Mail: * rade026@lipi.go.id

Masuk Tanggal : 12-02-2016, revisi tanggal : 25-04-2016, diterima untuk diterbitkan tanggal 30-04-2016

Intisari

LiFePO₄ merupakan material yang digunakan sebagai bahan aktif katoda pada aplikasi baterai *lithium-ion*. Studi awal ini dilakukan untuk mensintesis serbuk bahan aktif LiFePO₄ tanpa pelapisan karbon dengan metode tiga tahap perlakuan panas yaitu kalsinasi pertama dengan temperatur 700 °C selama 2 jam, kalsinasi kedua dengan temperatur 800 °C selama 8 jam, dan sinter menggunakan penstabil fasa tablet karbon aktif dengan temperatur 800 °C selama 4 jam. Bahan-bahan baku yang digunakan dalam sintesis ini adalah LiOH.H₂O, Fe₂O₃, dan H₃PO₄. Kalsinasi pertama menghasilkan prekursor yang memiliki komposisi Fe₂O₃ dan Li₃PO₄ dengan fasa Fe₂O₃ yang lebih dominan. Kalsinasi kedua menghasilkan prekursor yang memiliki komposisi Li₃Fe₂(PO₄)₃ dan Fe₂O₃ dengan fasa Li₃Fe₂(PO₄)₃ yang lebih dominan. Sementara proses sinter menghasilkan serbuk material aktif LiFePO₄. Dengan demikian terjadi transformasi fasa dalam tiga tahap perlakuan panas yaitu dari Li₃PO₄ menjadi Li₃Fe₂(PO₄)₃ kemudian menjadi LiFePO₄. Fasa akhir LiFePO₄ memiliki grup ruang Pnma yang berarti berstruktur *olivine*. Struktur *olivine* ini yang digunakan sebagai bahan aktif katoda baterai *lithium-ion*. Tablet karbon aktif tetap utuh setelah sintesis, sehingga tidak bereaksi dan membentuk pelapisan karbon pada serbuk LiFePO₄. Dengan demikian, metode ini dapat digunakan untuk mensintesis LiFePO₄ tanpa pelapisan karbon dalam lingkup skala laboratorium.

Kata Kunci: LiFePO4, Sintesis, Tanpa pelapisan karbon, Tiga tahap perlakuan panas, Skala laboratorium

Abstract

LiFePO₄ is one of the cathode active materials for lithium-ion batteries. This study aimed to synthesize LiFePO₄ active material powder without carbon coating using three-step heat treatment i.e. first calcination with 700 °C temperature for about 2 h, second calcination with 800 °C temperature for about 8 h, and sintering using activated carbon pellets with 800 °C for about 4 h. The raw materials are LiOH.H₂O, Fe₂O₃, and H₃PO₄. The first calcination produced precursor which consists of Li₃PO₄ and Fe₂O₃, with Fe₂O₃ as a dominant phase. The second calcination produced precursor which consists of Li₃Fe₂(PO₄)₃ and Fe₂O₃, with Li₃Fe₂(PO₄)₃ as a dominant phase. The sintering process produced LiFePO₄ as a final powder product. There is Li₃PO₄ - Li₃Fe₂(PO₄)₃ - LiFePO₄ phase transformation during three-step heat treatment. The final product i.e. LiFePO₄ has a Pnma space group. It is indicated that LiFePO₄ has an olivine structure. The olivine structure is a structure that uses for lithium-ion cathode material. Activated carbon pellets did not react during final sintering process, so that it did not make a carbon coating on LiFePO₄ morphology. According to the results, we can conclude that this method can be used for synthesizing lab-scale LiFePO₄ without carbon coating.

Keywords: LiFePO₄, Synthesis, Non-carbon coating, Three-step heat treatment, Lab-scale

1. PENDAHULUAN

Lithium iron phosphate (LiFePO₄) merupakan salah satu material yang banyak digunakan sebagai bahan aktif elektroda positif (katoda) pada baterai *lithium-ion*. LiFePO₄ banyak digunakan karena relatif lebih murah bila dibandingkan bahan aktif katoda lainnya,

tidak beracun, dan ramah lingkungan^[1]. Secara teoritis, LiFePO₄ mampu menghasilkan kapasitas spesifik 170 mAh/g dan densitas energy 583 Wh/kg^[2]. Dalam pengujian tersebut, terjadi ekstraksi lithium saat proses *charging* dan penyisipan kembali lithium pada saat proses *discharging*^[1]. Kemampuan dalam ekstraksi dan penyisipan kembali lithium itulah

yang menyebabkan LiFePO₄ dapat digunakan sebagai material aktif baterai sekunder lithiumion. Dari sudut pandang struktur kristal, untuk dapat digunakan sebagai bahan aktif katoda baterai lithium-ion, struktur LiFePO₄ yang terbentuk haruslah berbentuk olivine. Struktur olivine dapat dicirikan dengan terbentuknya struktur kristal orthorhombik dengan space group Pnma^[1]. Sintesis material LiFePO₄ sendiri merupakan proses yang rumit. Secara umum, ada dua metode utama dalam mensintesis LiFePO₄, yaitu metode solid-state dan wet-chemical process^[3]. Metode wetchemical process dapat dibedakan lagi menjadi hidrothermal, solvothermal, ion-thermal, solgel, co-presipitasi, dan spray-pyrolysis^[3]. Ada tiga faktor yang umumnya dikontrol dalam sintesis LiFePO₄; yaitu kemurnian fasa, ukuran partikel, dan pelapisan karbon^[3]. Kemurnian fasa merupakan faktor utama dalam sintesis serbuk LiFePO₄, sementara ukuran partikel dan pelapisan karbon merupakan faktor tambahan untuk meningkatkan performa elektrokimianya saat sudah digunakan dalam sel baterai lithiumion^[3]. Penelitian tentang sintesis LiFePO₄ sendiri berkembang terus hingga sekarang. Hingga tahun 2010, metode sintesis masih banyak menggunakan metode-metode umum tersebut, namun mulai (klasik) 2011 perkembangan menunjukkan sintesis LiFePO₄ mulai mengarah pada pembuatan serbuk yang berukuran nano partikel, yang pada prakteknya merupakan kombinasi nano partikel dengan pelapisan karbon^[4].

Penambahan karbon baik dalam bentuk komposit LiFePO₄/C maupun berbentuk pelapisan karbon (carbon coating) pada permukaan partikel LiFePO₄ tidak lain untuk meningkatkan performa elektrokimianva^[5]. Sumber karbon sendiri dapat diperoleh dari berbagai sumber. Perbedaan sumber karbon akan menyebabkan perbedaan pada temperatur pembentukannya. Sebagai contoh, LiFePO₄/C dengan sumber karbon dari prekursor polimer memerlukan temperatur kalsinasi 600 °C. Sementara itu, kontrol ukuran partikel dapat menciptakan LiFePO₄ yang dapat diaplikasikan baterai *lithium-ion* untuk pada aplikasi rendah^[6]. Umumnya, temperatur secara eksperimental, ukuran partikel yang semakin kecil akan menghasilkan performa elektrokimia yang lebih baik pada operasional temperatur rendah^[6]. yang lebih Kombinasi penambahan/pelapisan karbon dengan kontrol ukuran partikel dapat ditemukan pada metode solvothermal^[7]. Pada metode ini, kalsinasi dapat dilakukan hanya dengan temperatur

rendah 170 °C sehingga dapat menghemat energi dalam sintesisnya^[7].

Metode sintesis LiFePO₄ dengan kombinasi ukuran partikel nano dan pelapisan karbon tentunya memerlukan instrumentasi sintesis yang mutakhir dan berharga sangat mahal sehingga akan menelan biaya sintesis yang sangat mahal pula. Sintesis dengan menggunakan instrumentasi mutakhir tersebut akan mudah dilakukan di negara-negara maju dengan fasilitas riset yang mutakhir, namun akan sulit dilakukan pada negara-negara yang masih berkembang seperti Indonesia. Oleh sebab itu, Indonesia dapat bermain pada sintesis bahan baku material aktif baterai lithium yang bersifat generik. Bahan baku material aktif LiFePO₄ sendiri dapat disintesis dalam bentuk generik. Bentuk generik dari serbuk LiFePO₄ sendiri harus memiliki kemurnian yang tinggi dan dapat diolah lebih lanjut. Dengan demikian, faktor utama dalam sintesis serbuk LiFePO₄ generik adalah kemurnian fasanya. Bentuk generik dari serbuk LiFePO₄ ini harus dapat diolah lanjut, seperti dapat direduksi ukuran partikelnya atau dapat dilapiskan karbon dari berbagai sumber karbon. Dengan demikian, hal yang dapat dilakukan untuk membuat serbuk LiFePO₄ generik adalah mengoptimalkan metode sintesis konvensional sudah ada dengan menyesuaikan vang instrumen sintesis yang dimiliki. Namun, dalam studi ini metode solvothermal tidak dapat diterapkan karena keterbatasan alat. Dari metode-metode sintesis klasik tersebut, metode hidrothermal merupakan metode yang paling banyak memiliki faktor yang harus dikontrol (pH, pelapisan karbon, ukuran partikel, dan temperatur sinter) bila dibandingkan dengan lainnva^[8]. metode-metode Metode copresipitasi lebih mudah dilakukan dibandingkan metode hidrothermal, karena hanya mengontrol penambahan karbon dan temperatur sinter. Hasil dari metode co-presipitasi dapat berupa serbuk komposit LiFePO₄/C dengan ukuran partikel mikro^[9]. Ukuran partikel tidak menjadi masalah bagi serbuk LiFePO₄ generik, namun justru menguntungkan bila ukuran partikelnya semakin kecil karena akan mengurangi kebutuhan proses lanjutan reduksi ukuran partikelnya. Hal yang menjadi masalah adalah metode tersebut memerlukan kedua penambahan/pelapisan karbon. Sedangkan kita ketahui, penambahan/pelapisan karbon dapat dilakukan pada proses lanjutan dengan berbagai sumber karbon. Bila kita dapat mensintesis serbuk LiFePO₄ generik tanpa pelapisan karbon, maka serbuk tersebut akan memiliki

pasar yang cukup potensial, salah satunya pada dunia riset dimana memudahkan peneliti yang akan memfokuskan pada riset sumber karbon sebagai bahan pelapisan karbon pada permukaan partikel LiFePO₄. Dalam sektor industri baterai lithium ke depan, serbuk komersial LiFePO₄ generik tanpa pelapisan karbon akan memiliki harga yang lebih murah dengan LiFePO₄ dibandingkan dengan pelapisan karbon. Selain itu, serbuk LiFePO₄ tanpa pelapisan karbon akan bersifat lebih fleksibel karena pengguna akan bebas menentukan sumber karbon apa pun yang diinginkan sebagai sumber pelapisan karbon pada serbuk generik tersebut guna meningkatkan performa elektrokimia sel baterai lithium buatannya.

Sebuah studi pada tahun 2013 menunjukkan bahwa sintesis LiFePO₄ tanpa pelapisan karbon dapat dilakukan dengan menggunakan metode sol-gel dengan penambahan *dopant* Cu^[10]. menunjukkan Penelitian tersebut bahwa LiFePO₄ tanpa pelapisan karbon dapat dilakukan. Namun, pada penelitian tersebut, LiFePO₄ yang dihasilkan belum bersifat generik karena adanya penambahan dopant Cu. Oleh karena itu, studi ini mencoba untuk mensintesis serbuk LiFePO₄ tanpa pelapisan karbon dan tanpa penambahan dopant pula dengan menggunakan metode sintesis yang lebih mudah. Metode sintesis yang digunakan dalam studi ini terbagi dalam tiga tahapan perlakuan panas; yaitu kalsinasi pertama, kalsinasi kedua, dan sintering. Studi ini juga memfokuskan pada fasa-fasa yang terbentuk pada tiap perlakuan panas tersebut. Metode ini merupakan pengembangan dari metode carbothermal. Pada umumnya hasil dari metode carbothermal masih menghasilkan serbuk dengan kemurnian yang kurang baik karena masih akan ditemukan fasa-fasa tak diinginkan atau pengotor^[11]. Fasa-fasa yang tidak diinginkan tersebut akan menyebabkan performa elektrokimia yang kurang baik bila sudah dirakit dalam bentuk sel baterai lithium ^[11]. Dalam tahap terakhir metode sintesis dalam studi ini, yaitu sintering, tablet karbon aktif ditambahkan untuk disinter bersamaan dengan prekursor, namun tidak ikut bereaksi menjadi LiFePO₄ dan dipisahkan setelah *sintering* sehingga akan didapatkan serbuk LiFePO₄ saja. Kegunaan tablet karbon aktif pada tahapan sintering sama seperti karbon pada bentuk LiFePO₄/C. yaitu sebagai pencegah terbentuknya fasa-fasa yang tidak diinginkan [12]

2. PROSEDUR PERCOBAAN

A. Sintesis Serbuk Prekursor

Bahan-bahan baku yang digunakan adalah serbuk LiOH.H₂O (*technical grade*, impor dari Tiongkok, kemurnian 97,3 %), serbuk Fe₂O₃ (*technical grade*, hasil pengembangan Pusat Penelitian Metalurgi dan Material – LIPI, kemurnian 96,25 %), dan H₃PO₄ cair (*technical grade*, impor dari Tiongkok, kemurnian 85 %). Bahan-bahan tersebut masing-masing ditimbang hingga memenuhi takaran persamaan reaksi (1) berikut:

LiOH.H₂O _(s) + $\frac{1}{2}$ Fe₂O_{3 (s)} + H₃PO_{4 (l)} → LiFePO₄ (s) + 3 H₂O _(g) + $\frac{1}{4}$ O_{2 (g)}(1)

ditimbang Setelah dengan takaran memenuhi persamaan reaksi (1), serbuk LiOH.H₂O dan serbuk Fe₂O₃ dicampur hingga homogen. Campuran serbuk homogen LiOH.H₂O dan Fe₂O₃ tersebut kemudian dilarutkan pada H₃PO₄ cair hingga bereaksi. Hasil dari reaksi tersebut kemudian dipanaskan di dalam oven dengan temperatur 80 °C selama 24 jam hingga mengeras. Hasil reaksi yang sudah mengeras tersebut kemudian ditumbuk sampai halus hingga ukuran partikel lolos 200 mesh. Bahan yang sudah halus ini kemudian dikalsinasi dua tahap, yaitu dengan temperatur 700 °C selama 2 jam pada tahap pertama dan 800 °C selama 8 jam pada tahap kedua. Tiaptiap proses kalsinasi dialiri gas inert N₂. Hasil vang diperoleh setelah kalsinasi tahap kedua berupa serbuk prekursor untuk digunakan pada proses *sintering*.

B. Sintesis Serbuk Bahan Aktif

Serbuk prekursor yang telah dibuat kemudian disinter bersamaan dengan tablet karbon aktif (NORIT) dalam satu crucible. Karbon aktif NORIT sendiri dipilih karena kemudahannya diperoleh di pasaran Indonesia. Rasio perbandingan massa antara serbuk prekursor dengan gabungan tablet karbon aktif (NORIT) adalah 1:1. Pada percobaan ini digunakan masing-masing 2 g serbuk prekursor dan 2 g gabungan tablet-tablet karbon aktif (NORIT). Proses sinter menggunakan temperatur 800 °C dengan durasi 4 jam dan dialiri gas inert N2. Proses sinter ini menyisakan serbuk bahan aktif LiFePO₄ dan tablet karbon aktif (NORIT) sebagai hasil akhir. Tablet karbon aktif (NORIT) kemudian dipisahkan dari serbuk bahan aktif LiFePO₄ sehingga hanya akan dihasilkan serbuk bahan aktif LiFePO₄ saja sebagai hasil akhir.

C. Karakterisasi Material

Untuk melihat fasa yang terbentuk pada tahap perlakuan masing-masing panas (kalsinasi pertama, kalsinasi kedua, dan *sintering*) dilakukan karakterisasi menggunakan XRD (x-ray diffractometer) merek Rigaku tipe SmartLab 3 kW dengan rentang sudut 20 mulai dari 10° hingga 90°. Sementara itu, analisis kualitatif dan kuantitatif dilakukan menggunakan perangkat lunak Rigaku PDXL.

Untuk melihat morfologi dari serbuk bahan aktif LiFePO₄ hasil sintesis digunakan pengambilan foto mikroskopis menggunakan SEM (*scanning electron microscope*) merek *Hitachi* tipe SU 3500 dengan perbesaran 2500 kali.

3. HASIL DAN DISKUSI

Terdapat tiga pola difraksi sinar-x hasil pengukuran menggunakan XRD. Tiga pola difraksi sinar-x tersebut terdiri atas pola difraksi sinar-x milik prekursor hasil kalsinasi pertama, milik prekursor hasil kalsinasi kedua, dan milik bahan aktif hasil *sintering*. Pola-pola difraksi sinar-x tersebut ditampilkan pada Gambar 1 sampai dengan Gambar 3. Tiap-tiap pola difraksi dianalisis baik secara kualitatif maupun kuantitatif. Dalam analisisnya, pada tiap-tiap pola difraksi dilakukan proses refinement hingga konvergen antara pola difraksi observasi dengan pola difraksi kalkulasinya. Proses refinement sendiri menggunakan metode Rietveld^[13]. Parameter konvergenitas hasil refinement dapat dilihat pada nilai chi² dan Rwp. Dari kedua nilai tersebut, nilai *chi*² merupakan parameter yang paling penting. Idealnya, nilai chi² bernilai satu. Nilai *chi*² yang bernilai satu menunjukkan nilai observasi dan kalkulasi yang 100 % sama. Dengan demikian, parameter konvergenitas hasil refinement yang semakin mendekati satu menunjukkan bahwa konvergenitas antara hasil observasi dengan kalkulasi semakin konvergen.

Gambar 1 menunjukkan pola difraksi sinarx serbuk prekursor hasil kalsinasi pertama. Kalsinasi pertama sendiri menggunakan temperatur 700 °C dengan durasi 2 jam. Hasil refinement pola difraksi pada Gambar 1 ini menunjukkan nilai chi^2 sebesar 1,0011 dan Rwpsebesar 9,64 %. Pada pola difraksi Gambar 1 ini terdapat 6 nilai *d-spacing* penting yang ditemukan. Nilai-nilai d-spacing tersebut adalah 3,97591 Å; 3,83699 Å; 2,7018 Å; 2,64602 Å; 2,5215 Å; dan 1,69616 Å yang terdapat pada sudut-sudut 20 secara berturutturut 22,3424°; 23,1623°; 33,131°; 33,8494°;

35,57°; dan 54,0194°. Nilai-nilai *d-spacing* 3.97591 Å: 3.83699 Å: dan 2.64602 Å cocok dengan basis data fasa Li₃PO₄ dengan nomor PDF 4+ 04-007-2815 yang memiliki nilai syarat *d-spacing* 3,98253 Å; 3,83765 Å; dan 2,64307 Å. Sementara nilai-nilai *d-spacing* 2,7018 Å; 2,5215 Å; dan 1,69616 Å cocok dengan basis data fasa Fe₂O₃ dengan nomor PDF 4+ 01-089-0596 yang memiliki nilai syarat *d-spacing* 2,70248 Å; 2,5185 Å, dan 1,6964 Å. Dengan demikian, hasil kalsinasi pertama menghasilkan dua fasa, yaitu Li₃PO₄ dan Fe₂O₃. Fasa Li₃PO₄ memiliki struktur kristal orthorhombik dengan space group Pnma dan struktur kristal Fe₂O₃ adalah rhombohedral dengan space group R-3c.

Gambar 1. Pola difraksi sinar-x prekursor hasil kalsinasi pertama dengan temperatur 700 °C selama 2 jam

Hasil analisis kuantitatif dari pola difraksi pada Gambar 1 menunjukkan prekursor hasil kalsinasi pertama ini memiliki komposisi 33 %berat Li_3PO_4 dan 67 %berat Fe_2O_3 . Dengan demikian, pada kalsinasi pertama ini tidak langsung terjadi reaksi seperti pada persamaan (1), dengan kata lain LiFePO₄ tidak langsung terbentuk pada tahap ini. Dari hasil analisis kualitatif XRD, dapat kita prediksi reaksi yang terjadi pada tahap kalsinasi pertama sebagai berikut:

 $\begin{array}{l} LiOH.H_{2}O_{(s)}+\frac{1}{2}Fe_{2}O_{3(s)}+H_{3}PO_{4(l)} \rightarrow 1/3\ Li_{3}PO_{4}\\ _{(s)}+\frac{1}{2}Fe_{2}O_{3(s)}+2/3\ H_{3}PO_{4(l)}+2\ H_{2}O_{(g)}\ \ldots.\ (2) \end{array}$

Dari persamaan reaksi (2) ini dapat kita lihat nilai perbandingan mol antara Li_3PO_4 dengan Fe_2O_3 adalah 1/3 : ¹/₂. Dengan demikian, bila kita misalkan nilai mol Li_3PO_4 adalah 1/3 dan nilai mol Fe_2O_3 adalah ¹/₂ serta kita kalikan masing-masing nilai mol tersebut dengan masing-masing nilai Mr (Mr $Li_3PO_4 = 115,79$ g/mol, Mr $Fe_2O_3 = 159,69$ g/mol), maka akan diperoleh massa Li_3PO_4 sebesar 38,5967 g dan massa Fe_2O_3 sebesar 79,845 g. Bila kita anggap

46 | Majalah Metalurgi, V 31.1.2016, ISSN 0126-3188/ 1-68

total persen massa Li₃PO₄ dengan Fe₂O₃ sama dengan 100 %, maka akan diperoleh persentase massa Li₃PO₄ sebesar 32,59 % berat dan Fe₂O₃ sebesar 67,41 %berat. Nilai-nilai hitungan persen massa ini tidak jauh berbeda dengan hasil analisis kuantitatif XRD, dengan demikian prediksi persamaan reaksi kimia (2) cukup valid untuk digunakan. Dari persamaan reaksi (2) dapat kita lihat bahwa sebenarnya ada senyawa lain hasil reaksi kalsinasi pertama ini, yaitu H₃PO₄ dan H₂O (uap air). Uap air menguap dan terbuang bersama-sama dengan gas inert (N₂) yang mengalir saat proses kalsinasi pertama. Sementara itu, H₃PO₄ merupakan salah satu komposisi yang ada pada prekursor hasil kalsinasi pertama, namun karena berupa cairan, maka tidak terdeteksi sebagai fasa pada saat karakterisasi XRD. Dari persamaan reaksi (2) dapat dilihat bahwa Fe₂O₃ belum terdekomposisi pada tahap kalsinasi pertama. Reaksi baru terjadi antara LiOH.H₂O dengan H₃PO₄ membentuk Li₃PO₄ dan uap air. Pada tahap kalsinasi pertama ini, LiOH.H₂O terdekomposisi menjadi Li⁺, OH⁻, dan uap air. Sementara itu, H₃PO₄ baru terdekomposisi sepertiganya saja menjadi H⁺ dan PO₄³⁻ serta menyisakan sisa 2/3 H₃PO₄ yang belum bereaksi. Kation H⁺ hasil dekomposisi sepertiga bagian H₃PO₄ dan anion OH⁻ hasil dekomposisi LiOH.H₂O bereaksi membentuk uap air. Sementara itu, kation Li⁺ hasil dekomposisi LiOH.H₂O bereaksi dengan anion PO₄³⁻ hasil sepertiga bagian dekomposisi H_3PO_4 membentuk Li₃PO₄. Dengan demikian, serbuk prekursor yang dihasilkan dari kalsinasi pada tahap pertama ini memiliki komposisi yang terdiri atas Li₃PO₄, Fe₂O₃, dan sisa H₃PO₄ serta belum menghasilkan LiFePO₄.

Gambar 2. Pola difraksi sinar-x serbuk prekursor hasil kalsinasi kedua dengan temperatur 800 °C selama 8 jam

Gambar 2 menunjukkan pola difraksi sinarx serbuk prekursor hasil kalsinasi tahap kedua. Pada kalsinasi tahap kedua ini, temperatur yang

digunakan adalah 800 °C dengan durasi 8 jam. Prekursor *starter* yang digunakan untuk tahap ini adalah prekursor hasil dari kalsinasi tahap pertama. Hasil refinement pada pola difraksi sinar-x yang tersaji pada Gambar 2 memiliki nilai chi^2 sebesar 1,2276 dan *Rwp* sebesar 10,57 %. Terdapat 5 nilai *d-spacing* penting pada pola difraksi sinar-x yang tersaji di Gambar 2 yaitu 4,2867 Å; 3,673 Å; 3,65353 Å; 2,5185 Å; dan 1,69426 Å pada sudut 20 berturut-turut 20,704°; 24,21°; 24,3427°; 35,6193°; dan 54,085°. Nilai *d-spacing* 4,2867 Å dan 3,65353 Å cocok dengan basis data fasa $Li_3Fe_2(PO_4)_3$ dengan nomor PDF 4+ 04-011-3207 yang menyaratkan nilai *d-spacing* pertama dan kedua 4,2977 Å dan 3,65823 Å. Sementara itu, nilai d-spacing 2,5185 Å dan 1,69426 Å cocok dengan basis data fasa Fe₂O₃ dengan nomor PDF 4+ 04-015-9685 yang mensyaratkan nilai d-spacing pertama dan kedua 2,51755 Å dan 1,71015 Å. Satu nilai d-spacing, yaitu 3,673 Å merupakan puncak yang berimpit, hal ini dikarenakan nilai 3,673 Å cocok dengan nilai syarat *d-spacing* ketiga basis data Li₃Fe₂(PO₄)₃ dan Fe₂O₃ sekaligus. Syarat nilai *d-spacing* ketiga dari fasa Li₃Fe₂(PO₄)₃ dan Fe₂O₃ sendiri secara berturut-turut adalah 3,67696 Å dan 3,69982 Å. Dengan demikian, dari hasil kalsinasi kedua ini, ada dua fasa yang dihasilkan yaitu Li₃Fe₂(PO₄)₃ dan Fe₂O₃. Fasa Li₃Fe₂(PO₄)₃ yang dihasilkan memiliki struktur kristal orthorhombik dengan space group Pcan. Sementara itu, fasa Fe₂O₃ yang dihasilkan memiliki struktur kristal rhombohedral dengan space group R-3c. Dari hasil analisis kuantitaifnya, prekursor yang dihasilkan dari kalsinasi tahap kedua ini memiliki komposisi 82 % berat $Li_3Fe_2(PO_4)_3$ dan 18 % berat Fe_2O_3 . Dari hasil analisis kualitatif dapat diprediksi reaksi yang terjadi pada kalsinasi tahap kedua ini akan mengikuti persamaan reaksi (3) seperti berikut:

Dari persamaan reaksi (3) dapat terlihat bahwa pada kalsinasi tahap kedua ini, Fe_2O_3 sudah mulai terdekomposisi. Pada tahap ini, sepertiga bagian Fe_2O_3 tersisa pada hasil reaksi, yang berarti 2/3 bagian Fe_2O_3 bereaksi pada tahap ini. Sebagian Fe_2O_3 yang bereaksi tersebut terdekomposisi menjadi ion-ion Fe^{3+} dan O^{2-} . Sementara itu, seluruh H_3PO_4 berhasil terdekomposisi pada kalsinasi tahap kedua ini. H_3PO_4 terdekomposisi menjadi kation H^+ dan

anion PO_4^{3-} . Ion-ion Fe^{3+} dan PO_4^{3-} kemudian dengan Li₃PO₄ bereaksi membentuk $Li_3Fe_2(PO_4)_3$. Sementara itu, ion-ion H⁺ dan O²⁻ bereaksi membentuk uap air. Uap air menguap dan terbuang bersama-sama dengan aliran gas inert N₂. Dengan demikian, serbuk prekursor yang dihasilkan dari kalsinasi tahap kedua ini akan memiliki komposisi yang terdiri dari Li₃Fe₂(PO₄)₃ dan Fe₂O₃ saja. Dari persamaan reaksi (3) dapat dilihat bahwa perbandingan mol $Li_3Fe_2(PO_4)_3$ dengan Fe_2O_3 adalah 1/3 : 1/6. Dengan memisalkan mol Li₃Fe₂(PO₄)₃ adalah 1/3 dan mol Fe₂O₃ adalah 1/6, maka dengan mengalikannya dengan nilai Mr masing-masing (Mr $Li_3Fe_2(PO_4)_3 = 417,43$ g/mol, Mr $Fe_2O_3 = 159,69$ g/mol) akan didapatkan massa $Li_3Fe_2(PO_4)_3$ sebesar 139,1433 g dan massa Fe_2O_3 sebesar 26,615 g. Dengan dibuat persentase, maka akan didapatkan persen massa Li₃Fe₂(PO₄)₃ sebesar 83,94 % berat dan persen massa Fe₂O₃ sebesar 16,06 %berat. Nilai-nilai persen massa yang didapat berada pada kisaran yang tidak terlalu jauh dengan hasil analisis kuantitatif XRD. Dengan demikian, dapat dipastikan pada kalsinasi tahap kedua ini menghasilkan prekursor yang terdiri atas Li₃Fe₂(PO₄)₃ dan Fe₂O₃, namun masih belum dihasilkan LiFePO₄.

Gambar 3 menunjukkan pola difraksi sinar-x serbuk prekursor hasil tahap ketiga perlakuan panas, yaitu sintering. Proses sinter ini menggunakan starter prekursor hasil kalsinasi tahap kedua. Prekursor tersebut kemudian disinter secara bersamaan dengan tablet-tablet karbon aktif dengan rasio massa prekursor dan gabungan tablet karbon aktif sebesar 1 : 1. Proses sintering ini menggunakan temperatur 800 °C dengan durasi 4 jam. Serbuk yang didapatkan kemudian dipisahkan dari tablettablet karbon aktif dan menjadi hasil akhir dari proses sintesis secara keseluruhan. Dari pola difraksi sinar-x yang disajikan pada Gambar 3, ditemukan tiga nilai d-spacing terkuat yaitu 3,4814 Å; 3,005 Å; dan 2,5175 Å pada posisi sudut 20 berturut-turut 25,566°; 29,71°; dan 35,633°. Nilai-nilai *d-spacing* terkuat tersebut sangat cocok dengan nilai-nilai syarat threestrongest-lines basis data fasa LiFePO₄ dengan nomor PDF 4+ 01-080-6319 yaitu 3,48394 Å; 3,0034 Å; dan 2,51974 Å, dengan 2,51974 Å sebagai syarat *d-spacing* pertamanya. Pada pola difraksi sinar-x Gambar 3 ini, tidak ditemukan lagi fasa lain selain LiFePO₄. Dengan kata lain, sinter ini hasil dari proses berhasil menghasilkan target fasa tunggal LiFePO₄. Hasil analisis kualitatif menunjukkan fasa LiFePO₄ yang terbentuk memiliki struktur kristal orthorhombic dengan *space group* Pnma, yang berarti struktur kristal LiFePO₄ yang terbentuk adalah struktur *olivine*^[1]. Proses *refinement* juga dilakukan pada pola difraksi Gambar 3 dan diperoleh nilai *chi*² sebesar 1,0564 dan *Rwp* sebesar 10,09 %. Setelah dilakukan *refinement*, diperoleh nilai-nilai parameter kisi aktualnya yaitu a = 10,328 Å; b = 6,010 Å; c = 4,694 Å serta sudut-sudut $\alpha = \beta = \gamma = 90^{\circ}$. Dengan hasil analisis kualitatif dan kuantitatif tersebut, maka dapat diprediksi reaksi yang terjadi pada tahap ketiga atau *sintering* mengikuti persamaan reaksi (4) berikut:

1/3 Li₃Fe₂(PO₄)_{3 (s)} + 1/6 Fe₂O_{3 (s)} + n C (s) \rightarrow LiFePO_{4 (s)} + ¹/₄ CO_{2 (g)} + (n - ¹/₄) C (s)(4)

Dari persamaan reaksi (4) tersebut dapat terlihat bahwa Fe₂O₃ terdekomposisi menjadi ion-ion Fe^{3+} dan O^{2-} pada saat *sintering*. Anion O²⁻ akan bereaksi dengan karbon (C) dari tablet karbon aktif membentuk gas CO₂. Gas CO₂ kemudian menguap dan terbuang mengikuti aliran gas inert N₂. Sementara itu, kation Fe³⁺ akan bereaksi dengan $Li_3Fe_2(PO_4)_3$ membentuk LiFePO₄. Dengan demikian, hasil akhir dari proses sintering ini adalah serbuk bahan aktif LiFePO₄ dengan sisa-sisa tablet karbon aktif yang tidak bereaksi. Setelah dipisahkan antara sisa tablet-tablet karbon aktif dari serbuk bahan aktif LiFePO₄, maka hanya akan tersisa serbuk bahan aktif LiFePO₄ saja. Serbuk bahan aktif LiFePO₄ inilah yang merupakan target sintesis secara keseluruhan. Serbuk bahan aktif LiFePO₄ yang dihasilkan ini merupakan bahan aktif tanpa pelapisan karbon. Tablet karbon aktif sendiri bertindak sebagai reduktor oksigen (O) yang berikatan dengan Fe sehingga dapat mencegah terbentuknya fasa yang tidak diinginkan.

Serbuk bahan aktif LiFePO₄ tanpa pelapisan karbon sebagai hasil akhir sintesis tersebut kemudian dilihat morfologinya menggunakan SEM dengan perbesaran 2500 kali. Foto SEM dari bahan aktif LiFePO₄ tersebut dapat dilihat pada Gambar 4. Dari Gambar 4 dapat terlihat meskipun ada sedikit aglomerasi, namun morfologi yang terbentuk sudah relatif homogen.

Dengan demikian, studi awal ini menunjukkan bahwa sintesis LiFePO₄ tanpa pelapisan karbon dari bahan baku LiOH.H₂O, Fe₂O₃, dan H₃PO₄ dapat dilakukan dengan tiga tahap perlakuan panas dengan dialiri gas inert N₂.

Gambar 3. Pola difraksi sinar-x serbuk hasil sinter dengan temperatur 800 °C selama 2 jam

Gambar 4. Foto SEM serbuk bahan aktif LiFePO₄ hasil sintesis dengan perbesaran 2500 kali

Tahapan perlakuan panas tersebut yaitu kalsinasi pertama dengan temperatur 700 °C selama 2 jam, kalsinasi kedua dengan temperatur 800 °C selama 8 jam, dan diakhiri dengan sintering menggunakan bantuan tablet karbon aktif dengan temperatur 800 °C selama 4 jam. Perlu diingat bahwa proses ini hanya menghasilkan serbuk bahan aktif LiFePO₄ tanpa pelapisan karbon sebanyak kurang lebih 2 g saja, yang artinya proses ini masih berlaku sebagai proses sintesis skala laboratorium. Akan tetapi, proses ini dapat dijadikan sebagai acuan pengembangan sintesis skala pilot maupun skala industri di masa depan. Sementara itu dari sisi skala laboratorium, karbon-karbon tersisa yang tergerus setelah proses pemisahan tablet bahan aktif dengan serbuk LiFePO₄ masih sedikit ditemukan (ditunjukkan dengan mapping EDX pada Gambar 5), untuk itu perlu juga dilakukan penelitian ke depan untuk mencari metode efektif pemisahan LiFePO₄ dengan tablet karbon aktif untuk meminimalisir sisa karbon yang tertinggal.

4. KESIMPULAN

Sintesis skala laboratorium serbuk bahan aktif LiFePO₄ tanpa pelapisan karbon dari bahan baku LiOH.H₂O, Fe₂O₃, dan H₃PO₄ dapat dilakukan dengan menggunakan tiga tahap perlakuan panas. Tahap pertama adalah kalsinasi dengan temperatur 700 °C selama 2 jam dengan fasa-fasa utama yang terbentuk Fe₂O₃ dan Li₃PO₄, tahap kedua adalah kalsinasi dengan temperatur 800 °C selama 8 jam dengan fasa-fasa utama yang terbentuk Li₃Fe₂(PO₄)₃ dan Fe₂O₃, dan tahap ketiga adalah *sintering* dengan temperatur 800 °C selama 4 jam dengan bantuan tablet bahan aktif sebagai pencegah fasa yang tidak diinginkan yang menghasilkan fasa utama yang terbentuk LiFePO₄.

Hasil akhir dari proses sintesis skala laboratorium ini adalah serbuk bahan aktif LiFePO₄ tanpa pelapisan karbon dengan struktur *olivine*.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Kementerian Negara Riset dan Teknologi Republik Indonesia yang telah membiayai penelitian ini melalui kegiatan SINAS tahun 2015.

DAFTAR PUSTAKA

 K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough. "Phospho-olivines as positive-electrode materials for rechargeable lithium batteries," *J. Electrochem. Soc.*, vol. 144 (4), pp. 1188-1194, Apr. 1997.

- [2] E. V. Antipov, N. R. Khasanova, S. S. Fedotov. "Perspective on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries," *Applied Crystallography.*, vol. 2, pp. 85-94, Oct. 2014.
- [3] J. Wang and X. Sun. "Understanding and recent development of carbon coating on LiFePO₄ cathode materials for lithiumion batteries," *Energy and Environmental Science.*, Nov. 2011.
- [4] V. Palomares and T. Rojo. "Synthesis processes for Li-ion battery electrodes – from solid state reaction to solvothermal self-assembly methods," *Lithium Ion Batteries – New Developments.*, Feb. 2012.
- [5] Y. H. Nien, J. R. Carey and J. S. Chen. "Physical and electrochemical properties of LiFePO₄/C composite cathode prepared from various polymercontaining precursors," *Journal of Power Sources*, vol. 193, pp. 822-827, Apr. 2009.
- [6] J. Liu, Z. Wang, G. Zhang, Y. Liu and A. Yu. "Size-controlled synthesis of LiFePO₄/C composites as cathode materials for lithium ion batteries," *International Journal of Electrochemical Science.*, vol. 8, pp. 2378-2387, Feb. 2013.
- [7] J. S. Lim, S. W. Kang, J. Moon, S. J. Kim, H. S. Park, J. P. Baboo and J. K. Kim. "Low-temperature synthesis of

LiFePO₄ nanocrystals by solvothermal route," *Nanoscale Research Letters*, vol. 7 (3), pp. 1-7, Jan. 2012.

- [8] M. Mazman, O. Cuhadar, D. Uzun, E. Avci, E. Bicer, T. C. Kaypmaz and U. Kadiroglu. "Optimization of LiFePO₄ synthesis by hydrothermal method," *Turkish Journal of Chemistry.*, vol. 38, pp. 297-308, Mar. 2014.
- [9] S. C. Jheng and J. S. Chen. "The synthesis of LiFePO₄/C composite by the precipitation between two water/oil emulsions," *International Journal of Electrochemical Science.*, vol. 8, pp. 4901-4913, Apr. 2013.
- [10] C. Ajpi, G. Diaz, H. Visbal and K. Hirao. "Synthesis and characterization of Cudoped LiFePO₄ with/without carbon coating for cathode of lithium-ion batteries," *Journal of Ceramic Society of Japan.*, vol. 121 (5), pp. 441-443, Mar. 2013.
- [11] Wu, Y. Ren and N. Li. "LiFePO₄ cathode material". *Electric Vehicles The Benefits and Barriers.*, Sep. 2011.
- [12] J. Yu, J. Hu and J. Li. "One-spot synthesis and electrochemical reactivity of carbon coated LiFePO₄ spindless," *Applied Surface Science.*, vol. 263, pp. 277-283, 2012.
- [13] H. M. Rietveld. "A profile refinement method for nuclear and magnetic structure," *Journal of Applied Crystallography.*, vol. 2, pp. 65-71, Nov. 1968.