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Abstract 
Austenitic stainless steels have advantages, such as high ductility and good corrosion resistance. The cold working 

process can increase the hardness and strength of the material. However, because a metastable austenite phase 

occurs in that material, there is a phase change of γ austenite to α’-martensite and ε-martensite, which will reduce 

the ductility and its corrosion resistance. The strengthening process with DPD (dynamic plastic deformation) can 

prevent the formation of martensitic phases through repeated impact at high strain rates. This study analyzed 

microstructures and hardness evaluation on Cr-Mn austenitic stainless steel due to dynamic plastic deformation 

through the repetitive hammering method. Repetitive hammering with a strain rate of 6,2 s-1 on Cr-Mn austenitic 

stainless steels was carried out on five specimens with variations in the impact of 50, 100, 150, 250, and 350 times 

with impact energy of 486 J/cm2; 2.207 J/cm2; 2.569 J/cm2; 6.070 J/cm2; and 11.330 J/cm2 respectively. 

Microstructure, hardness, and XRD (x-ray diffraction) analyses were carried out on Cr-Mn austenitic stainless 

steels before and after repetitive hammering. Metallography was carried out to observe the microstructure using an 

optical microscope. The hardness was tested through the Rockwell A hardness test. XRD examination was used to 

identify the phases formed and indications of nano-twins. The repetitive hammering process up to 350 times has 

succeeded in increasing hardness from 53.5 HRA to 71.6 HRA. Plastic deformation introduced by repetitive 

hammering produced slip bands, cross bands, wavy bands, and an indication of nano-twins formation and increased 

hardness. 

 

Keywords: DPD (dynamic plastic deformation), repetitive hammering, nano-twins, Cr-Mn austenitic stainless steel, 

SFE (stacking fault energy) 

1. INTRODUCTION 
    Austenitic stainless steel is widely used due to 

its good corrosion resistance, formability, and 

weldability. However, austenitic stainless steel 

relatively has low mechanical properties 

compared to other types of steel (around 100-400 

MPa) due to its FCC (face center cubic) structure 

[1]–[4]. To enhance its mechanical properties, 

cold working is commonly used on austenitic 

stainless steel to create high strength martensite 

phase. However, martensite formation on the 

austenitic stainless steel could reduce its 

corrosion resistance [5]-[6].  

    In the previous study carried out on the 316L 

austenitic stainless steel [7], a high strain rate is 

needed to prevent the formation of the martensite 

phase and maintain austenitic stainless steel with 

high ductility and good corrosion resistance [7]-

[8]. With a high strain rate, the phenomenon is 

mechanical twinning with the formation of nano-

twin grains in austenitic stainless steels [7], [9]. 

The volume fraction of the nano-twin is about 

8% in austenitic stainless steels, increasing the 

yield strength of the material by more than 25% 

[11]. One method for forming nano-twin is 

dynamic plastic deformation (DPD) [7], [11]-[14].  

    The formation of the nano-twin will be 

influenced by the material’s SFE (stacking fault 

energy) value. The mechanical twinning 

phenomenon will be activated if the stacking 
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fault energy is between 20 to 50 mJ/m2, below 

which martensite formation is more accessible 

[15]. In addition, austenitic stainless steel 

material has a metastable austenite phase that is 

easily transformed into martensite when cold 

working at temperatures farther away from Md30 

[16]- [17]. Md30 is the temperature at which 50% 

martensite is formed after 30% true strain. Thus, 

as the temperature gets colder and closer to the 

Md30 temperature, the austenite is more stable 

and difficult to transform into α'-martensite or ε-

martensite in austenitic stainless steels  [16]. 

    In this study, dynamic plastic deformation 

DPD was carried out using low-cost laboratory-

made repetitive hammering, which has the 

working principle of repeatedly dropping the load 

on the specimen. Then we will study dynamic 

plastic deformation treatment through the 

repetitive hammering method on austenitic Cr-

Mn stainless steel material with manganese as a 

substitute of nickel as an austenite former [18]. 

After the repetitive hammering process, its 

microstructure and hardness were analyzed to 

prove the strengthening mechanism of the Cr-Mn 

austenitic stainless steel through this treatment. 

 

2. MATERIALS AND METHODS 
2.1 Materials 

    Cr-Mn austenitic stainless steel with 10% Mn 

and 13% Cr was used in this study.  

 
Table 1. Actual chemical composition of Cr-Mn austenitic 

stainless steel 
Elements (wt%) 

C Si S P Mn Ni Cr Fe 

0.058 0.36 0.017 0.049 10.468 1.26 13.63 73.22 

 

The specimen's chemical composition was 

characterized through OES (optical emission 

spectroscopy), as shown in Table 1. 

 

2.2 Methods 

    The following equations (1) and (2) are used to 

calculate the value of SFE (stacking fault energy) 

[4], [8], [18], and Md30 temperature [16]-[17]. 

SFE (mJ/m2) = 2,2 + 1,9Ni– 2,9Si + 0,77Mo + 

0,5Mn + 40C – 0,016Cr – 3,6N 
(1) 

Md30, Angel = 413 – 462 (C+N) – 9.2Si – 8.1Mn 

– 13.7Cr – 9.5Ni – 18.5Mo 
(2) 

 

    Solution annealing treatment was conducted to 

eliminate the deformation process on the as-

received specimen at 1050 °C for 2 hours [19]. 

After solution annealing treatment, dynamic 

plastic deformation was conducted through the 

repetitive hammering method. Repetitive 

hammering with a strain rate of 6.2 s-1 on Cr-Mn 

austenitic stainless steels was carried out on five 

specimens with variations in the impact of 50, 

100, 150, 250, and 350 times using 4.95 kg load 

mass as shown in the scheme in Fig. 1.  

 

 
Figure 1. Repetitive hammering process 

 

    Hammering energy ( ) and true strain ( ) on 

each specimen were calculated through equations 

(3) and (4). With, n = hammering cycle number, 

m = load (4.95 kg), g = gravity constant, h = 

Hammering drop height (1 m), dan s = specimen 

contact area, = specimen's initial thickness, = 

specimen's final thickness 

 

 

 
 

(3) 

 
 

(4) 

    Microstructure observation was conducted 

through the metallography examination. The 

specimens were polished and etched with aqua 

regia etchant to reveal their microstructure. Then, 

a hardness test was done with Rockwell A 

hardness test. Lastly, the XRD (x-ray diffraction) 

examination analyzed the specimen's existing 

phase. 

 

3. RESULT AND DISCUSSION  
    The OES (optical emission spectroscopy) 

characterization results in Table 1, the material 

used belongs to the low alloy austenitic stainless-

steel Cr-Mn. The composition of Ni as a 

stabilizer of austenite is relatively low, but the 

function of Ni is replaced by Mn so that the 

composition is relatively high. Reducing the 

composition of Ni by 1% must be replaced by 

adding 2% Mn to achieve austenite stability [20]–

[24]. 

    The Md30 and  SFE (stacking fault energy) 

values are 99.2 °C and 0.0109 J/cm2, respectively, 

indicating the very low possibility of martensite 

formation at room temperature during 

deformation [16]. 
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    Microplastic deformation marks and twinning 

were already observed on the as-received 

microstructure, indicating that the materials were 

already plastically deformed. Microplastic 

deformation twinning was successfully reduced 

with solution annealing treatment due to 

recrystallization, as shown in Fig. 2. 

  

 
                     (a)                                               (b) 

Figure 2. Microstructure of (a) as received and (b) after 

solution annealing with aqua regia etchant low alloy 

austenitic stainless-steel Cr-Mn 

     

    Based on energy calculation and dimensional 

measurement on the austenitic stainless-steel Cr-

Mn before and after repetitive hammering, more 

hammering from 50 to 350 cycles increase the 

hammering energy, reduce specimen thickness, 

and increase the true strain, as shown in Table. 2.  

Hammering energy achieved is much higher than 

the required (SFE) of materials (0.0109 J/cm2) 

calculated using Equation 1. 

 
Table 2. Hammering energy and true strain of low alloy 

austenitic stainless-steel Cr-Mn after repetitive hammering 

Cycle 

(n) 

Hammering 

Energy 

(J/cm2) 

Initial 

thickness 

(mm) 

Final 

thickness 

(mm) 

True 

Strain 

50 486 

9.30 

9.00 0.03 

100 2207 8.67 0.07 

150 2569 8.14 0.13 

250 6070 7.74 0.18 

350 11330 6.88 0.30 

 

    Increased the true strain of materials is the 

primary indicator of a higher degree of plastic 

deformation due to higher hammering energy. 

After repetitive hammering, slip band and cross-

band were observed on the microstructure of the 

486 J/cm2 hammering energy or 50 hammering 

cycle. The density of the slip band was increased 

along with the greater hammering energy. 

Furthermore, the wavy band was observed on 

austenitic stainless steel Cr-Mn microstructure 

that received higher hammering energy as in 150 

Hammering Cycle (2569 J/cm2 Hammering 

Energy) and 350 Hammering Cycle (11330 J/cm2 

Hammering Energy), while twinning phenomena 

were observed on all of austenitic stainless steel 

Cr-Mn. Slip bands and cross-band were easily 

formed on the austenitic stainless steel that 

received repetitive hammering due to its low SFE 

value; thus, both slip bands and cross-band will 

be formed on the material that experienced lower 

hammering energy [25]–[28]. 

 

 
                   (a)                                             (b) 

Figure 3. Microstructure of 50 hammering cycle (486 J/cm2 

hammering energy) and (b) 150 hammering cycle (2569 

J/cm2 hammering energy) with aqua regia etchant 

 

After repetitive hammering, plastic deformation 

on the specimen was confirmed by a 

metallography examination that showed a higher 

degree of slip-band and twinning inside the 

structure grain on the specimen that received 

higher hammering energy, as shown in Fig. 3 and 

Fig. 4.  
 

 
Figure 4. Microstructure of low alloy austenitic stainless-

steel Cr-Mn 350 hammering cycle (11330 J/cm2 hammering 

energy) with aqua regia etchant 

 

    In contrast, a higher SFE is needed to create a 

wavy band could explain why it is only observed 

on the higher hammering energy, such as on the 

2569 J/cm2 hammering energy. 

    The formation of the slip, cross, and wavy 

bands could obstruct the dislocation movement 

and cause strain hardening [29]–[31]. This 

phenomenon was observed in the hardness test 

result shown in Table 3.  The hardness of the 

stainless steel that was already reduced due to 

solution annealing treatment from 58 to 53.5 

HRA will be increased up to 71.6 HRA after the 

repetitive hammering process and following the 

increment of true strain, as shown in Fig. 5. 
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    The XRD analysis in Fig. 6 shows a decreasing 

austenitic peak (γ-111) intensity from 907 at the 

as-received to 542 at the material with 350 

hammering cycles (11030 J/cm2 hammering 

energy).  

 
Table 3. Hardness test result of as received, after solution 

annealing and after repetitive hammering low alloy 

austenitic stainless-steel Cr-Mn 

Specimen / Cycle 

(n) 

Hammering 

Energy 

(J/cm2) 

True 

Strain 

Hardness 

(HRA) 

As Received - - 58±1.57 

After Solution 

Annealing 
- - 53.5±0.85 

50 486 0.03 54.3 ± 0.81 

100 2207 0.07 58 ± 1.60 

150 2569 0.13 62.2 ± 0.55 

250 6070 0.18 67.6 ± 0.38 

350 11330 0.30 71.6 ± 0.36 

 

    The decreased intensity indicated the 

formation of the lattice distortion that formed the 

slip band [11], [29], [32]-[33]. Also, with 

hammering energy of 2.207 J/cm2, the ε and α' 

martensite phases appear due to relatively low 

SFE value in the austenitic stainless steel Cr-Mn 

specimen (10.9 mJ/m2) with the strain rate of 6.2 

s-1 [16]. 
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Figure 5. Hardness vs. true strain curve of low alloy 

austenitic stainless steel Cr-Mn after repetitive hammering 

 

    Also, with hammering energy of 2.207 J/cm2, 

the ε and α' martensite phases appear due to 

relatively low SFE value in the austenitic 

stainless steel Cr-Mn specimen (10.9 mJ/m2) with 

the strain rate of 6.2 s-1 [16]. 

    Table 4 shows the impact energy of 11,330 

J/cm2, an increased FWHM (full width at half 

maximum) value from 0.452 to 0.483 compared 

to the initial material at hkl (111), indicates a 

widening and shift of the diffraction peaks caused 

by the formation of nano-twins measuring about 

5 nm and the increasing density of stacking faults 

[33]-[34]. 

 

    Nano-twin and stacking faults are planar 

defects that cause lattice parameters to change. 

Therefore, it causes a strain field to cause a shift 

and widening of the diffraction peak [9], [35]-

[36]. 
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Figure 6. XRD result on as-received material, 100 

hammering cycle (2207 J/cm2 hammering energy), 250(6070 

J/cm2 hammering energy), and 350 hammering cycle (11330 

J/cm2 hammering energy) low alloy austenitic stainless-steel 

Cr-Mn 

 

    The formation of nano-twins can occur due to 

mechanical twinning in the repetitive hammering 

process. 

 
Table 4. FWHM of as-received material, 100 hammering 

cycle (2207 J/cm2 hammering energy), 250(6070 J/cm2 

hammering energy), and 350 hammering cycle (11330 J/cm2 

hammering energy) low alloy austenitic stainless steel Cr-

Mn 

Austenitic 

SS Cr-Mn  

Treatment 
2θ Hkl FWHM 

Solution 

annealing 

43.4 (111) 0.452 
50.3 (200) 0.675 
74.4 (220) 1.024 

Hammering 

energy 

2207 J/cm2 

44.4 (111) 0.479 
46.9 (110) -0.050 
64.0 (102) 1.066 
81.5 (211) 0.708 

Hammering 

energy 

6070 J/cm2 

43.9 (111) 0.411 
51.0 (200) 1.211 
74.9 (220) 0.921 

Hammering 

energy 

11330 

J/cm2 

43.9 (111) 0.483 
51.0 (200) 1.538 

75.0 (220) 1.192 
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    At the same time, the stacking faults can 

appear because the SFE value of the austenitic 

Cr-Mn stainless steel of 10.9 mJ/m2 is relatively 

low. Thus, it is easier to form more stacking 

faults on the Cr-Mn austenitic stainless steel 

along with the given deformation widening of the 

diffraction peaks on the material from the 

repetitive hammering with the energy 11330 

J/cm2. The XRD analysis supports the 

microstructure analysis results. It shows that the 

increase in hardness in Cr-Mn austenitic stainless 

steels resulting from repetitive hammering is 

caused by strain hardening and an indication of 

mechanical twinning that forms nano-twin grains 

stacking faults. The sign of the presence of nano-

twin shows the success of the dynamic plastic 

deformation process using repetitive hammering 

[33]-[34]. 

  

4. CONCLUSIONS 
    Repetitive hammering process up to 350 

hammering cycles (11030 J/cm2 hammering 

energy) can cause the formation of slip band, 

cross band, and wavy band with the indication of 

the nano-twin presence on the Cr-Mn austenitic 

stainless steel. The repetitive hammering process 

also increased the hardness from 53.5 HRA to 

71.6 HRA, which shows the success of 

strengthening Cr-Mn austenitic stainless steel 

through the dynamic plastic deformation induced 

by repetitive hammering. 
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